Magnetic measurements compared to specifications and updated consequences on beam dynamics

- 60 collared coils and 14 cryomagnets have been used to update the 9901 field error table for the main dipoles (E. Todesco et al., LHC Rep. 625).
- Except for b₁, only small sytematic differences (so-called "uncertainty") can be observed between the 3 different firms, i.e uncertainty ≈ or ≪ random components.

 \longrightarrow A full mixing installation scenario can be envisaged.

- With cross-section 2, some multipoles are still out of specification, in particular b₅ and b₇ at injection (impact on the DA) and b₃ at high field (Q' correction at 7 TeV).
 - ⇒ Question 1: Do we have to optimize further the dipole cross-section?
 Question 2: If yes, what is the right moment to do it?

Contents

- Transfer function and field direction
- Coupling and β -beating induced by a_2 , b_2 and feed-down from b_3
- Non-linear multipoles at injection. Tracking studies
 - Comparison with the specifications
 - Dynamic aperture
 - How to install the pre-series (magnets with cross-section 1)?
- Dynamic effects: snap-back and ramp induced effects
- Non-linear multipoles in collision
 - Comparison with the specifications
 - Systematic b_3
- Conclusions

Integrated transfer function

- Compared to the other 2 producers, Firm 3 exhibits
 - \longrightarrow a systematic b_1 of 14.5 units (i.e. 17 units in the collared coil).
 - \longrightarrow but with small random fluctuations $\sigma_{b_1} < 3$ units.
- Depending on the *installation strategy*, possible reduction of the safety margin on the MCB strength at 7 TeV:

Case 1. Full mixing of the 3 producers at the level of each arc cell:

 \Rightarrow "Effective random" b_1 exactly within specification, $\sigma_{b_1} < 8$ units.

 \Rightarrow Safety margin of 50% (assuming $\delta x_{MQ} = 0.37$ mm r.m.s.).

Case 2. Few arc cells fully equipped with Firm 3 magnets:

 $\Rightarrow \langle b_1 \rangle_{\text{cell}} \sim 2/3 * 16 \sim 10 \text{ units but random } b_1 \text{ of } 3 \text{ units r.m.s}$.

 \Rightarrow Safety margin of 30% after local correction.

 \Rightarrow Further reduced to 15% for $\delta x_{MQ} = 0.5$ mm r.m.s. (other small effects not included as long. shifts of the MB mag. center, smoothness of the survey curve,...).

A correction will remove ALL potential constraints on the installation:
 e.g. iron ↔ nested laminations, -6.8 cm for Firm 3 and +3.4 cm for Firms 1&2,
 symmetrically on both magnet ends.

Budget for the strength of the arc closed orbit correctors	MCB ($\theta_{\rm max} = 80.8\mu{ m rad})$
--	---

Specification from LHC report 501				
Contribution	Required corrector strength [μ rad]			
MQ misaligned by 0.37 mm r.m.s.	$31 (at 3 \sigma)$			
(T. Tortschanoff, Alignment workshop, CERN, Dec. 2000)	01 (<i>a</i> (5 0)			
BPM misaligned by 0.24 mm r.m.s. w.r.t. MQ	$10 (at 2 \sigma)$			
(J.P. Papis, Alignment workshop, CERN, Dec. 2000)	10 (at 3 0)			
$b_1 = 8$ units r.m.s. in MB	$21 (at 3 \sigma)$			
$\langle b_1 \rangle_{\text{cell}} = 6.5 \text{ units}$	16			
Quadratic sum of random contributions	$\sqrt{31^2 + 10^2 + 21^2} + 16 = 55$			
Linear sum of all contributions (pessimistic)	31 + 10 + 21 + 16 = 78			
Current status based on magnetic me	easurements			
Configuration	Required corrector strength [μ rad]			
Full mixing in each cell	Quadratic sum: 39			
$(b_1 = 8 \text{ units r.m.s. and } \langle b_1 \rangle_{\text{cell}} = 0)$	Linear sum (pessimistic): 62			
Some arc cells equipped only with Noel magnets	Quadratic sum: 58			
$(b_1 = 3 \text{ units r.m.s. and } \langle b_1 \rangle_{\text{cell}} = 10 \text{ units})$	Linear sum (pessimistic): 73			

Field direction ($\alpha = 1 \text{ mrad} \leftrightarrow a_1 = 10 \text{ units}$ **)**

- Specification: ±0.65 mrad systematic ±0.8 mrad r.m.s., (including survey errors and ground motion after 1 year)
 ⇒ Corresponds to 70% of the MCBV strength at 7 TeV.
- Average field direction (FD):

 \longrightarrow Discrepancy between the two measurement procedures:

- FD around $\pm 0.5 - 1$ mrad with the stretched wire method.

- FD up to 2.5 mrad for some dipoles when measured with the shaft.

- Local field direction $\alpha(s)$ (mainly induced by mechanical twist between the 2 apertures).
 - \longrightarrow can reach 6 mrad (hard limit of 10 mrad from MA constraint).
 - \longrightarrow the impact on the vertical CO depends on the convolution integral

$$I_0 \equiv \int_0^L ds \left(\alpha(s) - \langle \alpha \rangle \right) \times (L - s) \,.$$

→ Using less than 10% of the MCBV strength $\Rightarrow I_0 < 0.18 \text{ m}^2$. \Rightarrow Not very critical. At present, all MB's meet the spec.

$a_2 \ \& \ b_2 \ {\rm field \ errors}$

• β -beating

The β -beating should be within specifications at injection ($\Delta\beta/\beta < 20\%$ from MA constraint):

 \longrightarrow Expected random b_2 within specifications (0.7 units r.m.s.).

 \longrightarrow Expected systematic b_3 well within specifications at injection (-3.8 units against -10.7 specified).

 \Rightarrow reduction of feed-down effects coming from MCS misalignment.

• Coupling

 \longrightarrow Both the random a_2 and the a_2 running average are well within the specifications.

 \Rightarrow Safety margin of 40-50% in the MQS strength at high field.

• Comparison with the specifications at injection

Randoms (combined data of dipoles with X-section 1 & 2)

 \longrightarrow All randoms meets the specifications except the random b_3

 \longrightarrow but **very pessimistic** estimate (non nominal shims and change of the X-section in the meantime),

 \rightarrow e.g. $b_3 \sim 2.4$ units r.m.s. for the present estimate, compared to

1.2 for the dipoles with cross-section 2, and 1.4 in the specifications.

Systematic, i.e. running average (only MB with X-section 2)

1. The running averages of all skew and even normal multipoles (i.e.

 b_2, b_4, b_6, \ldots) meet the specifications.

2. At injection, $\langle b_5 \rangle = 1.38$, $\langle b_7 \rangle = 0.33$, $\langle b_9 \rangle = 0.77$ instead of 1.1 and 0.1 specified, and 0.38 expected in the 9901 error table.

$\mathbf{a_n}$	Systematic: Aperture V1/V2 (Systematic+ Uncertainty if applicable)			Random (r.m.s. value)		
$\mathbf{b_n}$	9901 error table	Specification	Expected	9901 error table	Specification	Expected
b_2	$-1.40 \pm 0.85 / + 1.40 \pm 0.85$	$-1.40 \pm 0.80 / + 1.40 \pm 0.80$	+1.31/-1.10	0.75	0.70	0.63
b_3	$-9.70 \pm 1.38 / - 9.70 \pm 1.38$	$\langle b_3 \rangle < 10.7$	-3.86/-3.69	1.50	1.40	2.39
b_4	$+0.22\pm0.34/-0.22\pm0.34$	$+0.2\pm0.4/-0.2\pm0.4$	-0.01/-0.01	0.51	0.50	0.11
b_5	$+0.89 \pm 0.44 / + 0.89 \pm 0.44$	$\langle b_5 \rangle < 1.1$	+1.33/+1.43	0.43	0.50	0.50
b_6	$-0.01 \pm 0.06 / + 0.01 \pm 0.06$	none	-0.02/+0.00	0.09	none	0.04
b_7	$-0.16 \pm 0.05 / - 0.16 \pm 0.05$	$-0.3 < \langle b_7 \rangle < 0.1$	+0.32/+0.34	0.22	none	0.24
b_8	$+0.00 \pm 0.00 / - 0.00 \pm 0.00$	none	-0.01/+0.01	0.04	none	0.02
b_9	$+0.36 \pm 0.03 / + 0.36 \pm 0.03$	none	+0.77/+0.77	0.07	none	0.12
b_{10}	$+0.00 \pm 0.00 / - 0.00 \pm 0.00$	none	+0.00/+0.01	0.00	none	0.02
b_{11}^{-5}	$+0.57\pm0.00/-0.57\pm0.00$	none	+0.59/+0.59	0.00	none	0.03
a ₂	$-0.00 \pm 0.51 / - 0.00 \pm 0.51$	$+0.00 \pm 0.90 / + 0.00 \pm 0.90$	-0.37/-0.37	1.86	1.90	1.21
a_3	$-0.08 \pm 0.87 / + 0.08 \pm 0.87$	$+0.00 \pm 1.50 / - 0.00 \pm 1.50$	-0.26/-0.23	0.48	0.70	0.33
a_4	$+0.00 \pm 0.13 / + 0.00 \pm 0.13$	$+0.00 \pm 0.13 / + 0.00 \pm 0.13$	-0.03/-0.04	0.51	0.50	0.28
a_5	$+0.01\pm0.42/-0.01\pm0.42$	$+0.00 \pm 0.40 / - 0.00 \pm 0.40$	+0.03/+0.02	0.34	0.40	0.10
a_6	$+0.00 \pm 0.06 / + 0.00 \pm 0.06$	none	-0.01/+0.00	0.17	none	0.08
a_7	$+0.02\pm0.00/-0.02\pm0.00$	none	+0.04/+0.04	0.08	none	0.04
a_8	$+0.00 \pm 0.00 / + 0.00 \pm 0.00$	none	+0.01/+0.00	0.08	none	0.03
a_9	$-0.01 \pm 0.00 / + 0.01 \pm 0.00$	none	-0.01/-0.01	0.12	none	0.03
a_{10}	$+0.00 \pm 0.00 / + 0.00 \pm 0.00$	$-0.00 \pm 0.00/+0.00 \pm 0.00$ none $+0.00/-$		0.01	none	0.01
a_{11}	$+0.00 \pm 0.00 / + 0.00 \pm 0.00$	none	-0.04/-0.04	0.00	none	0.04

Comparison between 9901 error table (FQWG), specification table (LHC Report 501) and field harmonics expected **at injection** in the LHC main dipoles (LHC Report 626). a_n and b_n are given in units of 10^{-4} relative field error at a radius $R_{ref} = 17$ mm. \rightarrow Red multipoles do not fulfill the specifications for the systematic and/or random. \rightarrow Magenta multipoles disagree significantly with the systematic of the 9901 error table.

Non-linear multipoles at injection. Tracking studies (2/3)

- *Dynamic aperture at injection* (nominal tunes 64.28/59.31)
 - \rightarrow Specification: DA=12 $\pm 0.5 \sigma$ (error bars on DA calculation

estimated to 0.5σ)

 \longrightarrow Using "blindly" the new error table (i.e. with pessimistic estimate for the random multipoles, in particular b_3):

Configuration	$\mathrm{DA}\left[\sigma\right]\left(10^{5}\mathrm{turns} ight)$
Specification error Table (LHC Rep. 501)	11.5
New error Table (LHC Rep. 625)	10.1
New error Table, $\langle b_7 \rangle$ reduced to 0.1 unit	9.9
New error Table, $\langle b_9 \rangle$ reduced to 0.38 unit	9.7
New error Table, σ_{b_3} reduced to 1.4	11.2
New error Table, σ_{b_3} and $\langle b_7 \rangle$ reduced to 1.4 and 0.1 unit, resp.	11.6

 \longrightarrow DA non- or only slightly sensitive to b_7 and b_9 .

 \longrightarrow With a reduced random b_3 , the DA is almost recovered at 450 GeV.

 \longrightarrow No visible effect induced by b_5 (0.25 out of spec.), but feed-down effects

still to be evaluated. (e.g. $b_5 \rightarrow a_4$ for vert. misalignment of the MCD's).

Non-linear multipoles at injection. Tracking studies (2'/3)

• $\langle b_5 \rangle$ is out of spec. by 0.25 units at injection

 \longrightarrow No visible effect on the DA, but assuming the the b_5 -integral to be perfectly corrected.

 \longrightarrow Lost of 0.6 σ on the DA, i.e. just outside the tracking resolution, when the b_5 -integral is mis-corrected by $\pm 20\%$.

 \rightarrow potential danger with feed-down effects.

 \Rightarrow Urgent need of realistic inputs to launch the study.

Non-linear multipoles at injection. Tracking studies (3/3)

• Considering 2 different statistics for the MB's with X-section 1 & 2:

Relevant	X-section 1		X-section 2 (from 25 collared		
parameters	(from 16 cryo-magnets)		coils using warm-cold corr.)		
	Av. r.m.s.		Av.	r.m.s.	
b ₃ [units]	-0.72	1.84	-3.78	1.15	
b ₅ [units]	1.98	0.54	1.38	0.40	
b7 [units]	0.12	0.17	0.33	0.09	
Number	35		1197		
Туре	Туре В		Type A & B		

1. to study the impact of the pre-series on the DA and observables such as off-momentum beta-beating, Q'' and/or $\partial Q/\partial J$.

2. to justify or not a sophisticated installation strategies for these magnets, e.g.

 $\mathrm{MB} \ \leftarrow \ \pi \ (2 \text{ cells}) \ \rightarrow \mathrm{MB} \ \leftarrow \ \pi/2 \ (1 \text{ cell}) \ \rightarrow \mathrm{MB} \ \leftarrow \ \pi \ (2 \text{ cells}) \ \rightarrow \mathrm{MB} \ , \text{ or }$

 $MB \leftarrow \pi/2 (1 \text{ cell}) \rightarrow MB \leftarrow \pi (2 \text{ cells}) \rightarrow MB \leftarrow \pi/2 (1 \text{ cell}) \rightarrow MB$

(batches possibly interleaved to minimize the installation constraints).

 \longrightarrow *Preliminary results* indicate that the DA is slightly sensitive to the installation of the 35 pre-series, DA=11.1 - 11.6 σ (should be confirmed next week).

Dynamic effects

Decay and snap-back effects (based on data of 14 cryo-magnets).
 Average effect still critical but a factor from 2 to 3 lower than expected.
 → e.g. ⟨Δb₃⟩_{snap-back} = 1.7 ⇒ ΔQ' ~ 80 (compared to 150 with previous estimates).

Random effects (from magnet to magnet) larger than expected.

 \rightarrow e.g. $b_1^{\text{decay}} \sim 0.7$ units r.m.s. (much larger than the 0.16 units given in the 9901 error table) and $a_1^{\text{decay}} \sim 2.6$ units r.m.s. (measurement noise?).

 \rightarrow If real, strong impact on the design of the orbit feed-back system, since the corresponding vertical closed orbit amounts to 7σ peak, if not dynamically corrected!

• Ramp induced effects $\propto dI/dt$ small enough to be neglected for the LHC operation (inter-strand resistance higher than targeted).

 \longrightarrow In average, less than 0.05 units for all multipoles at 450 GeV assuming a ramp speed of 10 A/s.

Non-linear multipoles at high field (1/1)

• Comparison with the specifications

 \longrightarrow All the harmonics specified at 7 TeV meets the specifications,

namely a_2, b_2, a_3, b_4 and b_5 , except the systematic b_3 .

- Just at the limit to correct Q' at 7 TeV (with the nominal current of 550 A in the MCS spools).
 - Current specification @ 7 TeV: 3.0 units with a safety margin (see below)
 - Expected $\langle b_3 \rangle$ @ 7 TeV: 3.7 units
 - Hard limit @ 7 TeV: 4.3 units (MCS strength)
 - 0.6 units (note the beam-screen contribution, $\Delta b_3^{\text{b.s.}} = -0.42$).
- Strictly speaking, no margin in the lattice sextupoles:
 1. To preserve the optics flexibility (e.g. IP1-IP5 phase advance).
 - **2.** To anticipate any LHC upgrade (e.g. new triplets and reduced β^*).

 \Rightarrow Margin @ 7 TeV:

Non-linear multipoles at high field (1'/1)

 \rightarrow Strictly speaking, no reserve in the chromaticity sextupoles MS's, in order to preserve the optics flexibility and anticipate the LHC upgrade:

Optics configuration	Only Q' correction Results from LHC V6.4	Q', Q'' and $\partial \beta / \partial \delta$ correction Results from LHC V6.0 with $\mu_y \sim \pi / 2$ from IP1 to IP5	Q', Q'' and $\partial \beta / \partial \delta$ correction: Results from LHC V6.0 with $\mu y \equiv \pi$ from IP1 to IP5
$\beta^* = 0.5 \mathrm{m}$ in IR1& IR5	3.5	3.1	1.3
$\beta^* = 0.5 \text{ m}$ in IR1, IR2 & IR5	2.9	1.3	depends on $\mu_y^{1 \longrightarrow 2}$
$\beta^* = 0.25 \mathrm{m}$ in IR1& IR5	2.3	1.1	-2.0 (missing strength)

Reserve given by the lattice sextupoles to correct Q' at 7 TeV and expressed in units of un-corrected b_3 in the the main dipoles.

Conclusions (1/2)

• Summary

- \longrightarrow Transfer function under control (some further optimization needed) but random b_1 during snap-back larger than expected by a factor of 5.
- \rightarrow Unclear situation concerning measurement results of the field direction (a_1) (injection, decay and snap-back).
- \longrightarrow Coupling and β -beating under control.
- \longrightarrow DA of $11.1 \pm 0.5\sigma$ at injection (loss of 0.5σ due to b_7).
- \longrightarrow No visible effect of b_5 on the DA at injection (0.3 units out of spec.).
- \longrightarrow b_3 at high field very close to the hard limit of 4.3 units (MCS strength).
- The complete picture requires further studies including feed-down effects
 - \longrightarrow due to closed orbit and MB misalignments: real danger $b_7 \rightarrow (a_6, b_6)$.
 - \longrightarrow due to *spool-piece misalignment w.r.t. MB* (e.g. if dipole ends not under control in the vertical plane): potential danger $b_5 \rightarrow a_4$.
 - \longrightarrow due to *chromatic effects* during off-momentum beam measurement (e.g. for Q' and/or dispersion measurement): mainly $b_7 \rightarrow b_6$.

Conclusions (2/2)

- If one **can warrant that nothing will get worst during the production**, there is no strong argument to justify any additional change (but, feed-down effects still to be evaluated).
- If not, an action should be taken rapidly, **ideally at the end of the first octant** (i.e., preferably not at the middle of a given octant), by order of priority,

 \rightarrow reduction of the geometric b_3 : target value of $\langle b_3 \rangle = 3$ at high field (which minimises the feed-down effects at injection while keeping a safety margin corresponding to 2 octants for the correction of Q' at 7 TeV.)

 \rightarrow make profit of the change to reduce b_5 and recover the systematic b_7 , i.e $\langle b_7 \rangle \sim 0.1$ at injection.

 \Rightarrow which is clearly beneficial for any type of feed-down effects (alignment in the tunnel, dipole geometry, chromatic effects).

• Acknowledgments: L. Bottura and E. Todesco for measurement data.

Non-linear multipoles at injection. Tracking studies (2"/3)

• Dynamic aperture with new field error table for the main dipoles (60 seeds, 10⁵ turns, error table 9901 for the MQ's).

Dynamic Aperture $[\sigma]$ vs phase-space angle $\phi = \operatorname{atan}(A_y / A_x)$	15°	30 ⁰	45 ⁰	60 ⁰	75°	
LHC V6.2, Error table 9901						
Minimum over 60 seeds	11.8	11.8	13.4	13.9	15.	
Average over 60 seeds	13.3	13.6	15.3	15.5	16.	
LHC V	6.4, Error ta	ble 9901				
Minimum over 60 seeds	11.7	11.4	12.8	≥ 14	≥ 1	
Average over 60 seeds	13.3	13.2	≥ 13.9	≥ 14	≥ 1	
LHC V6	2, Specifica	tion table				
Minimum over 60 seeds	11.5	11.6	12.4	12.9	14.	
Average over 60 seeds	12.7	13.1	≥ 13.9	≥ 14.0	$\geq 14.$	
LHC V6.4, New Error table for MB's						
Minimum over 60 seeds	10.1	10.2	12.4	14.5	14.	
Average over 60 seeds	11.8	12.9	14.3	16.2	15.	

Non-linear multipoles at injection. Tracking studies (2"'/3)

• What is (are) the multipole(s) responsible for the loss of DA?

LHC V6.4, New Error table for MB's						
Minimum	10.1	10.2	12.4	14.5	14.2	
Average	11.8	12.9	14.3	16.2	15.7	
L	HC V6.4, N	ew Error ta	ble for MB'	s with $\langle b_7 \rangle$	$\rangle = 0.1$	
Minimum	9.9	10.1	12.6	14.0	14.6	
Average	12.3	13.0	14.5	16.1	16.2	
LH	LHC V6.4, New Error table for MB's with $\langle b_9 \rangle = 0.38$					
Minimum	9.7	10.2	> 12	> 12	> 12	
LI	LHC V6.4, New Error table for MB's with $b_3^{ran} = 1.4$					
Minimum	11.2	12.0	13.3	15.2	14.8	
Average	12.2	13.4	14.7	16.8	15.9	
LHC V6.4, New Error table for MB's with $b_3^{ran} = 1.4$ and $\langle b_7 \rangle = 0.1$						
Minimum	11.6	12.1	13.8	15.2	15.6	
Average	12.6	13.6	14.9	16.8	16.8	

 \longrightarrow DA non- or only slightly sensitive to b_7 and b_9 .

 \longrightarrow With a reduced random b_3 , the DA is almost recovered at 450 GeV (due to $\partial Q/\partial J \propto b_3^2$ and/or the excitation of the 3rd order resonances).