Follow-up and checkpoints of magnetic axis at 300 and 1.9K

J Garcia Perez, M Buzio (AT/MTM)

- 1. Magnetic axis equipment
- 2. Measurement examples
- 3. Follow-up in industry
- 4. Follow-up at CERN
- 5. Outstanding issues

1 – Magnetic axis equipment

Instrument	Destination	Capabilities	Status
Fraunhofer warm mole	CERN (SMA18)	Magnetic axis (QCD, correctors) Harmonics + angle	1 unit at CERN (now under repair) 1 + ¹ ⁄ ₂ units expected Q4 2003
Fraunhofer cold mole	CERN (SM18)	Magnetic axis (QCD, correctors) Harmonics	1 units expected Q3 2003
MAS AC warm mole	Industry CERN (SMA18)	Magnetic + geometric axis (QCD, correctors)	2 unit operational at CERN 6 units in industry expected 05/2003
MAS AC cold mole	CERN (SM18)	Magnetic axis (QCD, correctors)	2 units expected 04/2003
Single Stretched Wire	CERN (SM18)	Magnetic axis (SSS,correctors) L _{magnetic} , angle	1 unit operational 1 unit expected Q3/2003

Workshop on Field Quality Steering of Dipole Production, 20-21th March 2003 - J Garcia, M Buzio

3/10

Workshop on Field Quality Steering of Dipole Production, 20–21th March 2003 – J Garcia, M Buzio 4/10

3 – Follow-up in industry

Measurements with 2 \times MAS AC Moles at each producer's premises:

Cold mass (before delivery to CERN)

Checkpoints:

a) shape of magnetic and mechanical axes (mean plane)b) offset DX,DZ of corrector centre w.r.t. theoretical shape

8/10

4 – Follow-up at CERN

- MAS AC mole measurements now done on cryostated magnet (survey includes magnet fiducials)
- Fraunhofer test bench now being adapted to measure naked cold mass
- Tests ongoing to ensure consistency of results between the two different types of moles

Step	Device	N. of tests	Checkpoints
Reception WP01 (cold mass)	AC mole (Fraunhofer)	No longer done, except for special reasons ~5% random sample check	 shape of cold mass (sagitta) spool pieces wrt theoretical geometry distance magnetic/mechanical axis
WP03 (cryostated)	Fraunhofer (AC mole)	100% originally foreseen for pre-series, 50% realistic target due to equipment failures ~5% random check for series	-shape of cold mass -spool pieces wrt theoretical geometry -distance magnetic/mechanical axis
Cryogenic Tests	AC/Fraunhofer cold moles (SSW)	100% originally foreseen for pre-series, target now = 30% due to delivery delay ~5% for series	-as above -cold/warm correlation
WP08 (before storage)	Fraunhofer (AC mole)	100%	-as above

5 – Outstanding issues

- 1. **Cross-check of magnetic axis measurements done with different systems** (tests being done, results expected in April)
- 2. **Correlation between warm-cold magnetic axis** (First tests expected to begin in May)
- 3. Mechanical stability of dipole shape before/after cold test (analysis on tested magnets being carried out now)

