

- General overview
 - Total of 18 speakers divided into 5 sessions.
 - Topics covered: AP (target errors, beam dynamics issues), evolution of dipole design, geometry and alignment, follow-up (warm and cold), components and field quality, production analysis (for feedback), steering the field quality.
 - A selection of presentations will be reviewed as an introduction to the main topics (reported by C. Vollinger) that were presented/discussed at the workshop.

- How target errors evolved? (J.-P. Koutchouk)
 - First target error table: 9901
 - The new reference is the LHC PR 501 (for main dipole) that represents essentially a consolidation, but...
 - b₅: it calls for tests of off-momentum dynamic aperture.
 - b₇: the asymmetric bound might require further analysis.
- How are defined target errors? (O. Brüning)
 - Mechanical aperture: imposes bounds on closed orbit, parasitic dispersion, momentum spread, momentum offset, β -beating etc.
 - Alignment errors: imposes bounds via feed-down analysis.
 - Beam dynamics: imposes bounds on tuneshift (vs. amplitude, momentum offset, mixed terms). Target dynamic aperture: 12σ .

AP Considerations (II/II)

• Present status (S. Fartoukh)

- B dL is systematically higher for FIRM 3 magnets. Possible solutions: steering field quality (no impact on closed-orbit correctors), installation (some impact on closed-orbit corrector system).
- Field direction is not an issue (measurements results obtained with the single stretched wire are expected to be cross-checked with those from improved version of the long shaft).
- Dynamic aperture: the random part of b_3 (injection) dominates the dynamic aperture. However, the present estimate of b_3 random is rather pessimistic, due to mixing of cross-sections, non-standard components.
- Positive point: sorting of 35 pre-series dipoles does not seem necessary.
- Odd multipoles: b_3 (high-energy) and b_5 b_7 (injection) are outside bounds.
- NB: feed-down effects should be considered in detail.

- Dipole shape at warm (M. Bajko)
 - Severe difficulties with dipole shape due to spring back. The solution found was re-shaping (after welding).
 - Re-shaped dipoles show signs of instability: they come back to initial shape. Six out of eleven show this behaviour (but ten more in industry...)
 - Impact on spool piece correctors alignment, hence feed-down effects.

- Analysis and trend of dipole geometry (W. Scandale)
 - The spread in dipole shape is rather large.
 - It is confirmed that re-shaping is not a stable solution to cure dipole shape. The goal is to find better solutions within the first six months of the year 2003 (until then re-shaping is stopped).
 - Large movements of dipole heads are observed (critical for spool piece positioning)
 - No measurements have been performed to check whether the magnet continues moving after each cool-down.
 - Quenches do not have a significant impact on shape.