

Geometry: analysis and trend.

W. Scandale, G. Gubello, M. La China. CERN, AT division Acknowledgements: J. Beauquis, E. Wildner March,20 2003

1

CONTENTS

Geometrical shape

- Tolerance table
- Reshaping influence
- Head instability
- Shell-Shape correlation

Cold mass displacements experienced in the string2

Thermal cycle and quench effects

Conclusions

THEORETICAL SHAPE OF THE DIPOLE

Radial displacement of the spool piece to prevent feed down

TOLERANCE TABLE

rms deviations (1σ) in mm		Ende	Corrector	
Cold Mass Assembly	Core	Liius	Corrector	
Identification of the 'bundled' referencial	0.07	0.07		
Geometric vs mechanical axes in the dipole	0.33	0.20		
Deformations induced by dynamic effects	0.20	0.20		
Magnetic vs mechanical axes in the dipole	0.10	0.10		
Geometric vs mechanical axes in the corrector			0.10	
Magnetic vs mechanical axes in the correctors			0.10	
Beam screen				
Beam screen axis vs dipole mechanical axis	0.30	0.30		
Cold Mass in the Cryostat				
Thermo-mechanical deformation of the cold-feet	0.10	0.10	0.10	
Cryostat ovalisation and straightness error	0.10	0.10	0.10	
Dipole geometric axis vs external survey target	0.10	0.10	0.10	
Mispositionning of the dipole central foot	0.10	0.05	0.05	
Positioning in the Tunnel				
Transportation nto the tunnel	0.15	0.15	0.15	
Ideal position vs real position after one year run	0.28	0.50	0.50	
Mechanical aperture restriction in the dipole	0.54	0.63		
Magnetic center of the corrector vs magnetic axis of the dipole			0.48	
Tolerance at 3 σ in mm	Core	End		Ends round-off
Max at the manufacturers	1.01	0.64		0.6
Max at CERN reception	1.18	0.87		0.9
Max at CERN at storage		0.98		1.0
Max in the tunnel after one year 1.63		1.88		2.0
Max magnetic center of the corrector vs magnetic axis of the dipole			1.45	
Max radial offset of two consecutiveV-lines(including 1 mm margin)		3.66		4.0

March, 20 2003

The change of sagitta is computed using the 2nd order polynomial interpolation.

DATA COLLECTION AND INVOLVED DIPOLES

Measurement steps available:

- AfterWelding: without end cover and before reshaping
- ITP20: measurements performed by manufactory
- WP01: arrival @ CERN
- WP03: after cryostating
- WP08: after cold tests

Analyzed dipoles:

- → Alstom3 → Alstom6 → Alstom7 → Alstom8
- → Alstom10 → Alstom11 → Alstom12
 → Alstom12
- Alstom14
- Non Reshaped dipole:
 - → Alstom8 → Alstom9 → Alstom14
- Geometrical analysis restricted to the horizontal plane.

March, 20 2003

AFTER WELDING

"AfterWelding" the shape varies from dipole to dipole.

March, 20 2003

Walter Scandale

AT-MAS

AFTER MANUFACTURING

AFTER MANUFACTURING HORIZONTAL TUBE (OUTER TUBE)

March, 20 2003

AFTER COLD TEST

After cold test the shape variation increases again.

March, 20 2003

Walter Scandale

AT-MAS

- Reshaped, it comes completel[®] back to pre-reshaping.
- Extremities present displacements.
- For Alstom3 the behavior is doubtful because of the large measuring errors.

March, 20 2003

Reshaped; after transportation, partial change towards "AfterWelding".

- No additional change induced by cold test.
- March, Nonnegligible displacements at the aextremities.

• Reshaped, after cold test same shape as after manufacturing.

• Extremities present non negligible displacements.

March, 20 2003

Non reshaped; a relaxation is visible in the curvature and in the extremities.

• Unexplained behavior in the Connection Side extremity.

March, 20 2003

- Change of shape induced by a^m inappropriate cryostating procedure.
- The problem disappear after cold test.
- The cryostating procedure was improved afterwards.

Sagitta variation at the end of cold test.

	Dipoles	∆ sagitta [mm] respect AfterWelding	∆ sagitta [mm] respect Reshaped
	Alstom3	-0.47	-0.16
₽	Alstom6	-0.11	-0.12
eshaped	Alstom7	+1.48	-0.08
	Alstom10	+0.77	-0.78
	Alstom11	+0.04	+1.89
	Alstom12	+0.12	-1.06
rea	Alstom8	-0.69	-0.64
Non shape d	Alstom9	+0.15	-0.42
	Alstom14	+0.11	+0.28

After cold test 5/9 dipoles have the same sagitta as "AfterWelding"

The other dipoles present erratic movements.

March, 20 2003

HEADS INSTABILITY

Variation of the heads after cold test:

	∆ [mm]	∆ displacements respect AfterWelding	∆ displacements respect Reshaped	∆ sagitta respect AfterWelding	
Reshaped	Alstom3	+0.25	+0.15	-0.47	
	Alstom6	+0.10	-0.05	-0.11	
	Alstom7	-0.91	+0.62	+1.48	
	Alstom10	-0.65	+0.25	+0.77	
	Alstom11	-0.02	-0.93	+0.04	
	Alstom12	-1.02	+0.71	+0.12	
Non Reshaped	Alstom8	+0.75	+0.55	-0.69	
	Alstom9	+0.50	+0.45	<u>+0.15</u>	
	Alstom14	-0.25	-0.25	+0.11	

•No evidence of systematic trends in head displacements.

•Large head displacements (5/9) respect to Reshaped (detrimental for mechanical aperture).

•Opposite sign in head shift respect to sagitta variation (8/9); possible cause: friction of the cold mass central post.

March, 20 2003

ALSTOM 15

What will it happen to Alstom15, after cold test?

mm

SAGITTA AND HEAD DISTRIBUTIONS

March, 20 2003

- The shells determine the inertia of cold mass
- Is there any correlation between the shape of the shell and that of cold mass?
 Horizontal Displacements in Alstom 3

Comparison between curvature shells and after cold test and "AfterWelding" measurements of horizontal plane.

Seen a very good correlation in Aletomb²correlation in all the other cases Warch, 2(8/9).

Cold mass displacements in the test string2 second run

AT-MAS

- Both extremities have been monitored in three dipoles by mean of a low coherence interferometer
- Displacement in X and Y directions have been detected during and after tests

	COOL	DOWN		QUENC	н	Full th. cycle (1001)		
	∆X [mm] 6	∆Y [mm] 2	∆X [mm] 23	∆Y [mm] 5	rec time [hours] 28	∆ X [mm]	∆ Y[mm]	
mean	0.19	-1.025	-0.072	-0.24	3.7	0.2	-0.1	
std dev	0.14	0.11	0.015	0.026	0.7			
STRING 2								
	→ S	•	:)				• • • •	
K SSS3	MBP2O1	MBP2A2	MBP2N	N1 SSS3	1002	1001	3001	

CONCLUSIONS

AFTER THE COLD TEST

- ✤ 4/6 reshaped dipoles tend to assume the "AfterWelding"shape.
- 1/6 reshaped dipole only partially shifted towards "AfterWelding" shape.
- ✤ 1/6 reshaped dipole preserves its shape.
- The non reshaped dipoles have stable sagitta but instable heads.
- All type of dipoles may have some residual sagitta (5/9). In this case they have opposite sign in head offset respect to sagitta variation.
- There is no correlation between shell curvature and dipole shape at any stage.
- In the pre-series dipoles, the cold mass displacements induced by cool down or by quenches may reach few tenth of millimeter, as shown both in String2 and in the test benches.