

CERN, Field quality Workshop – 21st March 2003

Status and trends of field quality at 300° K and possible corrective actions

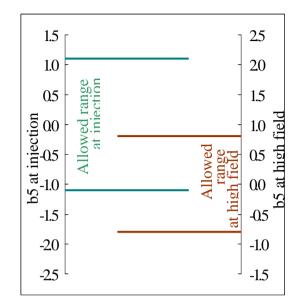
B. Bellesia, A. Devred, G. Gubello,

S. Pauletta, V. Remondino, W. Scandale,

E. Todesco, C. Vollinger, E. Wildner

AT-MAS-MA

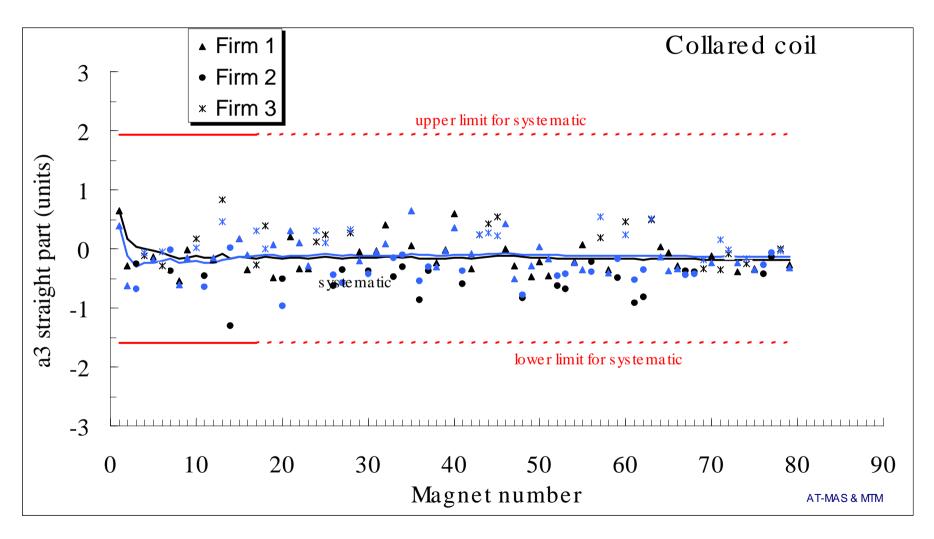
Contents


- What is large and what is tight
- Limits to field quality steering towards beam dynamics
 - Models versus measurements
 - + Time structure of production (see also talk of P. Fessia)
 - (Correlations from collared coil to operational conditions)
- Status of field quality (see also talks of S. Fartoukh and S. Sanfilippo)
 - Systematics
 - Randoms
- Orrective actions
 - Random BdL
 - Systematic odd multipoles
- Conclusions

What is large and what is tight

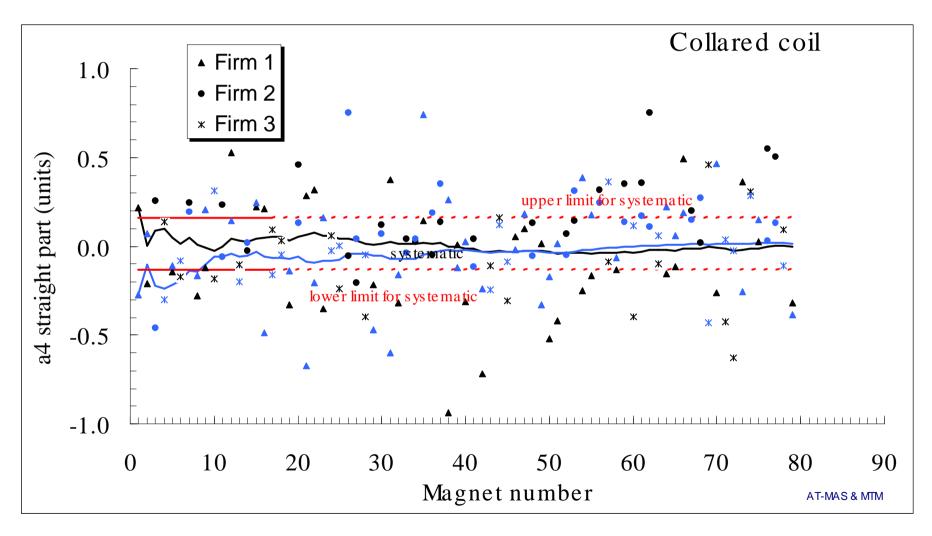
- Beam dynamics targets given as
 - Random Uncertainty Systematic
 - For random and uncertainty target values were agreed in FQWG (maximal values)
 - Ranges on systematics given by beam dyn. only [LHC Pr. Rep. 501] (iteration needed ?)

• Which are the tighter constraints ? On systematics


- We compare the range allowed for systematics to the natural sigma [measured random,1 σ]
- *a₄* and *b₅* ranges are
 very tight (control needed at 0.05 units !)

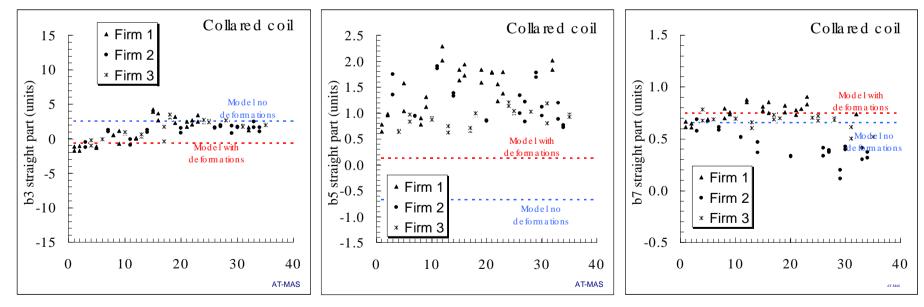
	random	syst. half range	
	(measured)	(beam dynamics)	
b3	1.50	3.50	easy
b5	0.45	0.35	hard
b7	0.17	0.24	SO-SO
b2	0.70	1.10	SO-SO
b4	0.11	0.37	easy
a2	1.30	1.00	hard
a3	0.40	1.70	easy
a4	0.30	0.14	hard

4th March 2003

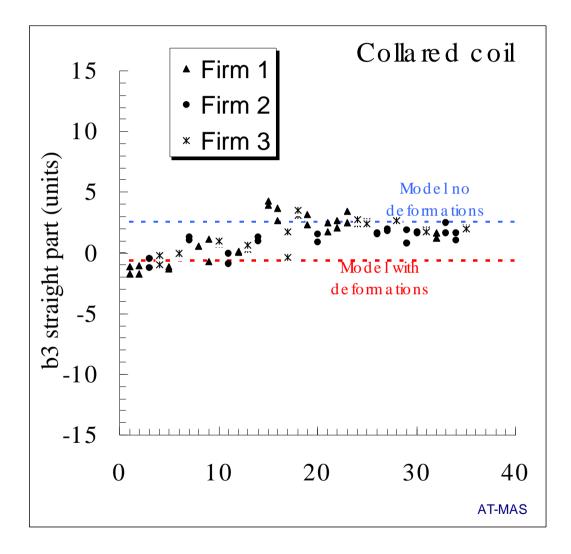

An easy case: a₃

4th March 2003

A hard case: a₄

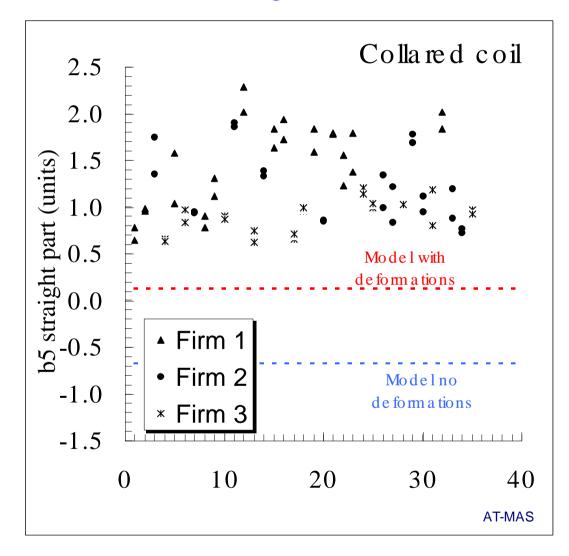


4th March 2003

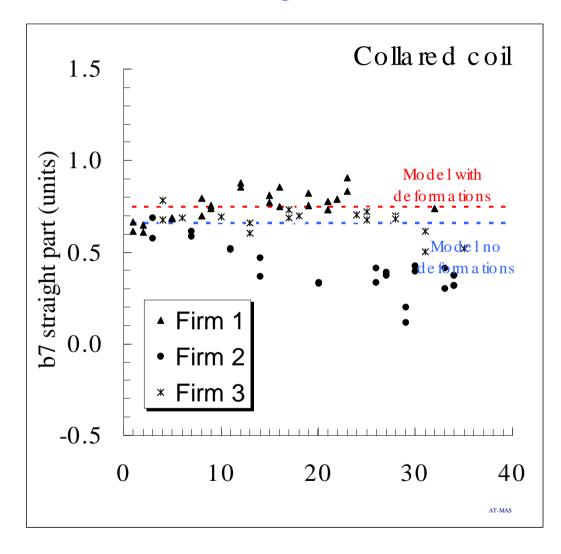

- Geometric, absolute: estimate of b₃ b₅ b₇ in collared coil discrepancy is 1-2 times the sigma (2 units of b₃, 1 of b₅)
 - Models are not enough predictive to get field quality within beam dynamics spec (ex. allowed range for b₅ is 0.7 units)
 - The effect of coil deformations is relevant for b5
 - + Iteration on coil design is needed

Data of X-section 1

4th March 2003



4th March 2003



Data of X-section 1

4th March 2003

Limits to FQ steering: model vs measurements

Data of X-section 1

4th March 2003

• Geometric, relative: what we did

- estimate of dependence b₂ b₄ on insert shape: [S. Redaelli et al, LHC-Project-Report 467, EPAC 2002]
- estimate of dependence of b₃ b₅ b₇ on polar shims [P. Ferracin, W. Scandale, D. Tommasini, E. Todesco, PRSTAB 5 (2002)]
- estimate of dependence of b₃ b₅ b₇ on midplane insulation [H. Kummer, D. Tommasini, et al. in progress]
 - Different models give different sensitivities up to 10%, depending on hypothesis to squeeze the coil [L. Bottura, A. Devred, E. Todesco, ...]
- In all cases agreement between model and experiment is within 20%
 - Corrective actions are expected to work at 80% to 120%

Shrinking cylinder

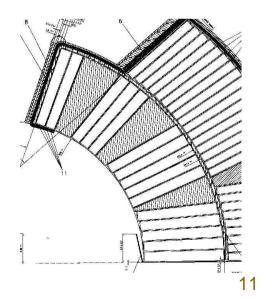
Mid-plane

Locking

Steel collars

Coil

Apertur

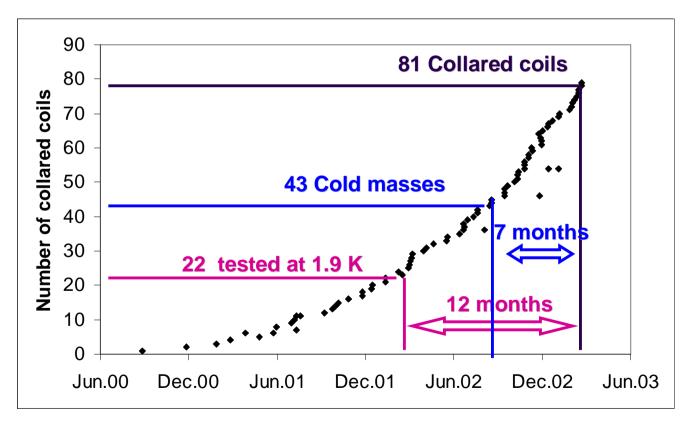

Iron yoke

10

- The midplane insulation experiment
 - Adding 0.05 mm and 0.10 mm more on midplane inner layer
 - Change of prestress test on linearity
 - Adding 0.05 mm more on midplane outer layer
 - Adding 0.05 mm more on midplane and reducing of 0.05 mm in the pole (inner layer only)
 - Sensitivities to be divided by 1.18 at 1.9 K (iron yoke missing)

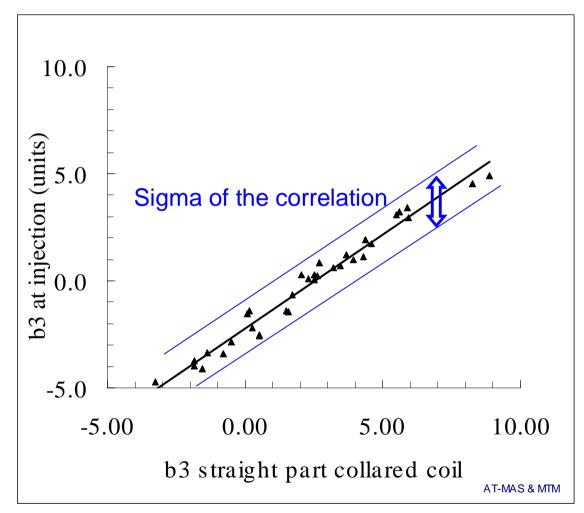
Pole in	Midpl in	Midpl ou		b3	b5	b7
			Model	-1.8	-0.54	-0.15
0.00	0.05	0.00	Measured	-1.9	-0.42	-0.13
			Model	-3.6	-1.07	-0.30
0.00	0.10	0.00	Measured	-3.8	-0.87	-0.27
			Model	-0.7	-0.10	-0.01
0.00	0.00	0.05	Measured	-0.5	-0.10	0.00
			Model	-2.9	-0.36	-0.23
-0.05	0.05	0.00	Measured	-2.4	-0.32	-0.18

4th March 2003


Limits to FQ steering: reproducibility

- What is the FQ reproducibility of a collared coil made with the same components ?
 - Experience from short models at CERN (range of variation):
 - $\Delta b_3 = \pm 0.2$ units $\Delta b_5 = \pm 0.05$ units $\Delta b_7 = \pm 0.01$ units
 - This is the best reproducibility one can obtain
 - No systematic effect
 - It is of the order of 1/10 of the natural random component
 - Experience from pre-series at manufacturer: some systematic effect (range of variation)
 - Δb_3 =-0.6±0.2 units Δb_5 =+0.5±0.2 units Δb_7 =-0.13±0.12 units
 - Statistics: 6 apertures in two manufacturers, collared two times
 - Large effect on b₅
 - Effect of the virgin state ?
 - What about a third decollaring ? (wait for 2002 data)

Limits to field quality steering: production snapshot


- 81 collared coils, 43 cold masses, 22 (18) cryomagnets
 - 7 months is the now the minimum delay between collared coil and test at cold (obtained for 1014) [expected to reduce to 2-3 months]

4th March 2003

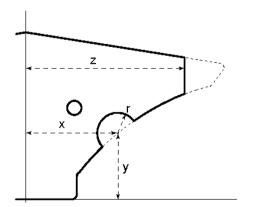
Limits to FQ steering: correlations (based on 17 dipoles) How good correlations are ? [see Sanfilippo talk]

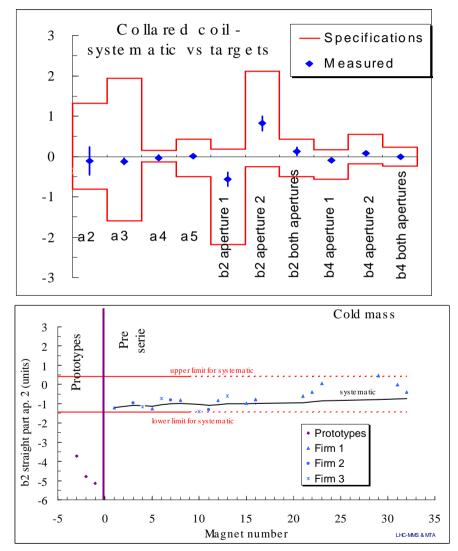
Limits to FQ steering: correlations (based on 17 dipoles)

- How good correlations are ? (referred to beam dynamics)
 - In general they are very good (yoking, persistent currents, saturation, Lorentz forces are well under control)
 - + a₄ at injection is bad, some concern for b₅, a₂, and others

	sigma correlations	sigma correlations	Half allowed range
	to high field	to injection	(beam dyn.)
Mag. Len.	4.2	4.0	15.0
C1/I	3.4	4.1	15.0
Bdl	5.1	5.4	24.0
b2	0.37	0.23	1.00
a2	0.29	0.46	1.10
b3	0.25	0.47	3.50
a3	0.09	0.07	1.70
b4	0.06	0.07	0.36
a4	0.06	0.16	0.15
b5	0.12	0.14	0.34
a5	0.02	0.02	0.47
b7	0.02	0.03	0.23
4 th March 2003	E 1	odesco AT-MAS-MA	

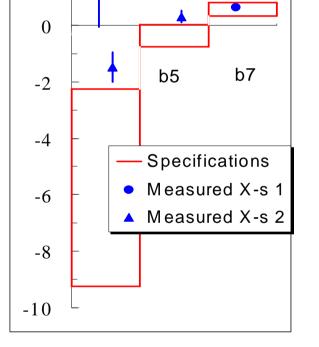
Contents


- What is large and what is tight
- Limits to field quality steering towards beam dynamics
 - Models versus measurements
 - + Time structure of production (see also talk of P. Fessia)
 - + (Correlations from collared coil to operational conditions)
- Status of field quality (see also talks of S. Fartoukh and S. Sanfilippo)
 - Systematics
 - Randoms
- Corrective actions
 - Random BdL
 - Systematic odd multipoles
- Conclusions

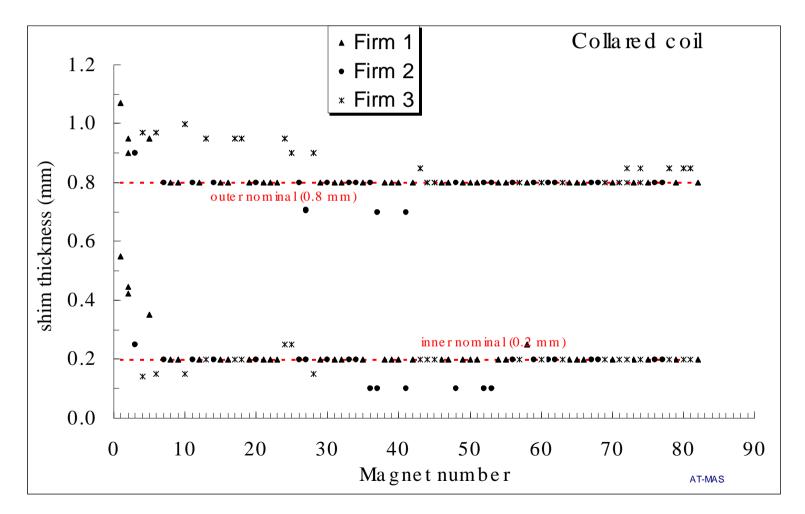


Field quality status: non-allowed systematics

- Everything is ok
 - two sigma error bars (on the average) are shown
 - ✤ a₄ is tight
 - Corrective action based on insert reshaping to minimize b₂ and b₄ in pre-series has been effective [S. Redaelli et al, LHC-Project-Report 467, EPAC 2002]

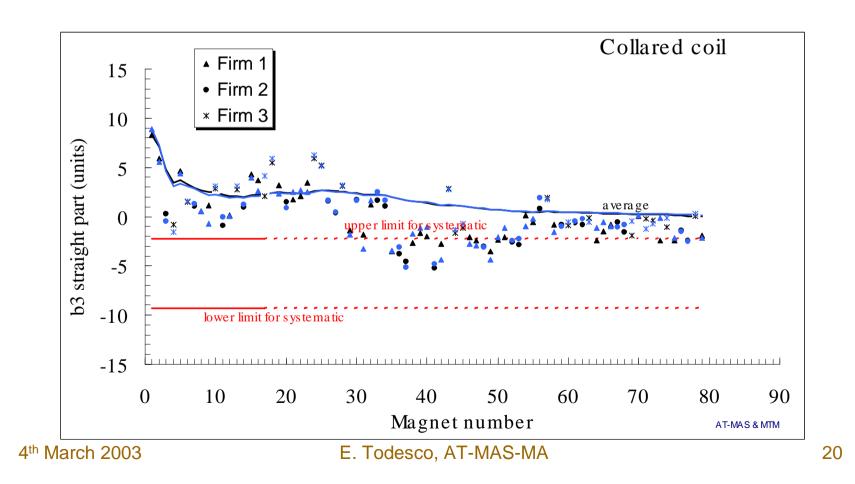


Field quality status: allowed systematics


- X-section 1: b_3 and b_5 were out of target of 3 and 1 units
 - Correction of the internal copper wedges after 9 collared coils
- Relevant improvements:
 - + $b_3 b_5 b_7$ at less than 1 u from targets
 - b₃ within ultimate limit (4.35 u)
 - ✤ b₅ at injection much better
- LHC would work with these values
 - with previous X-section severe limitations
- One could have minor limitations
 - ✤ b₅ at injection of 1.40 units
 - b₇ at injection of 0.33 units
 - Beam dynamics simulations are in progress (talk by S. Fartoukh)
- A drift could be very harmful (especially for b_3)

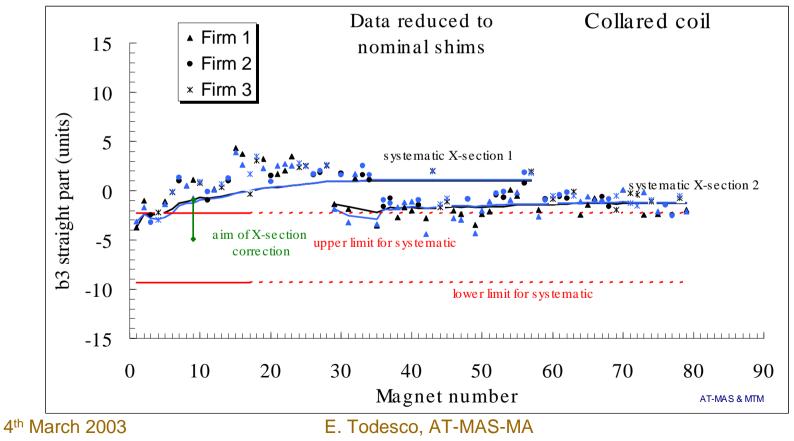
2

- Polar Shims: nominal within 0.05 mm in the last 25 c.c.
 - Negligible effect on field quality



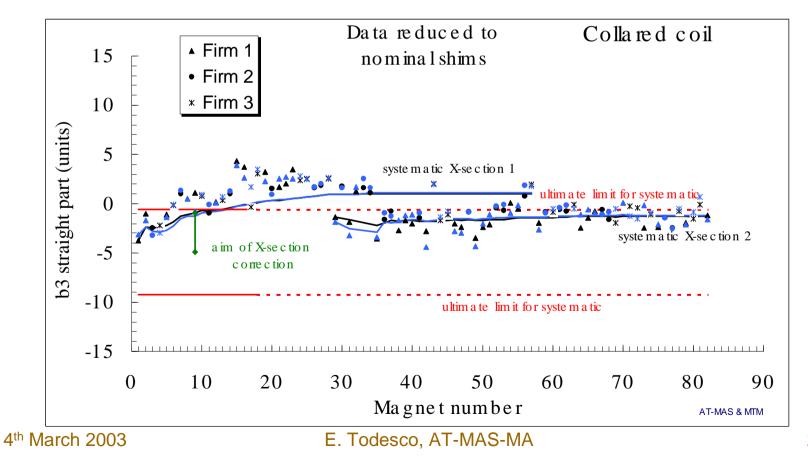
4th March 2003

• Systematic b_3 (raw data)



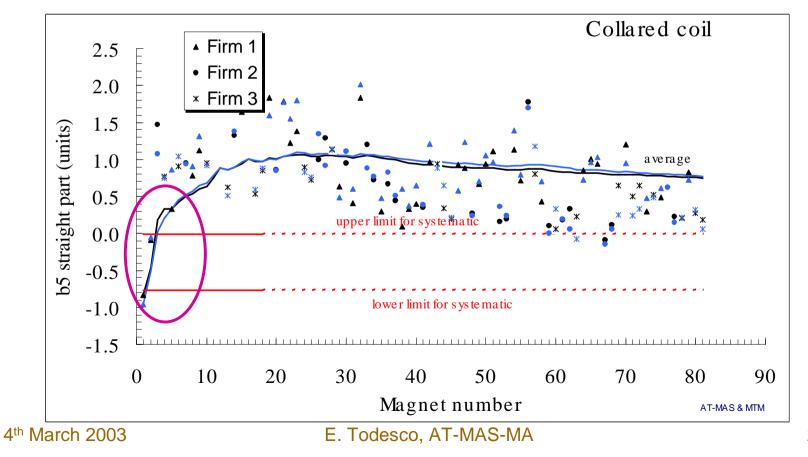
• Systematic b_3 is 1.0 unit larger than target range

- Allowed range wide with respect to random part
- Negligible differences between firms
- X-section correction worked at 85% a drift of around 3 units in part given by copper wedges dimensions [B. Bellesia et al, in press]



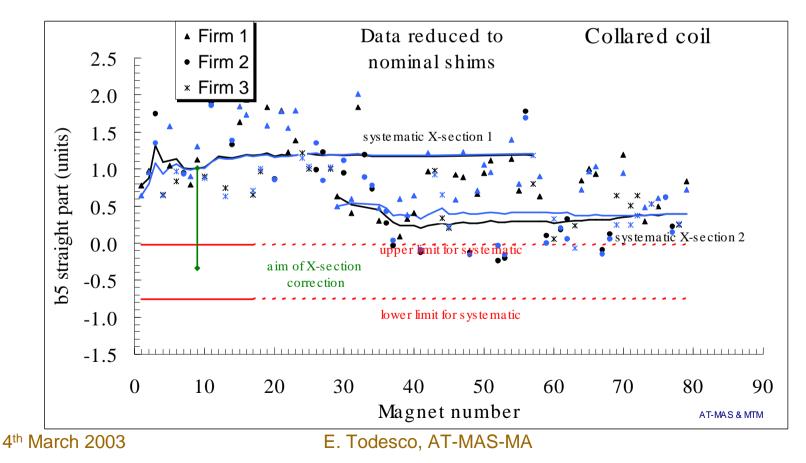
• Systematic b_3 is within ultimate limit

(should we trust Clint ?)



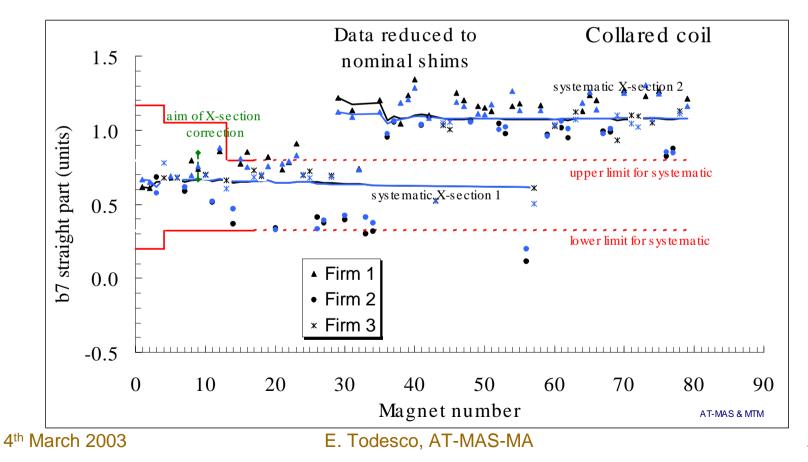
• Systematic *b*₅ (raw data)

 The correction based on raw data would have been underestimated of 0.5 units (shim non-nominalities up to 0.3 mm in 1001-1003)



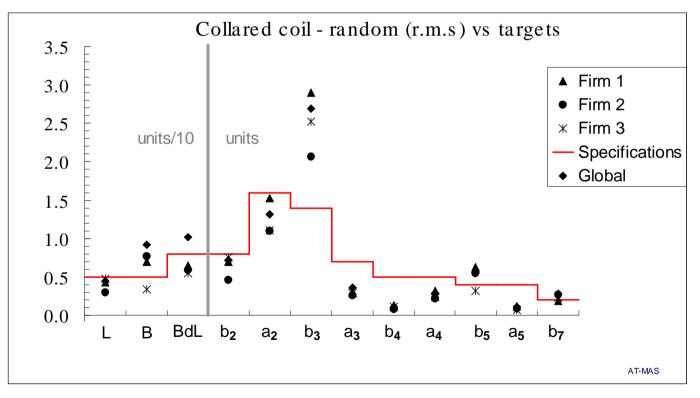
• Systematic *b*₅ is 0.40 units larger than target range

- Narrow band (0.7 units) with respect to random (0.45 units)
- Correction worked at 70% Large differences between firms (1 u.)
- Very sensitive on deformations Worst agreement for sensitivities



• Systematic b_7 is 0.28 units larger then target range

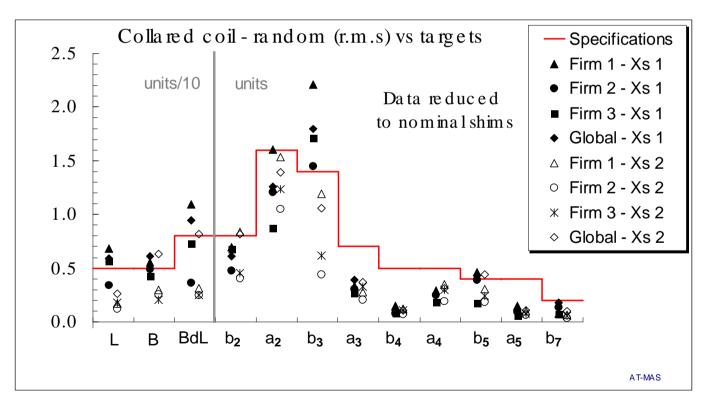
- Large differences between firms reduced in the new X-section
- Correction effect on cc: 0.47 instead of 0.18 not explained
- Negative drift in Firm 2 ? (as in X-section 1)



Field quality status: randoms

Random b₃ (and b₅) out of target (non-nominal shims, X-section change)

This effect will be reduced (production now is more stable)



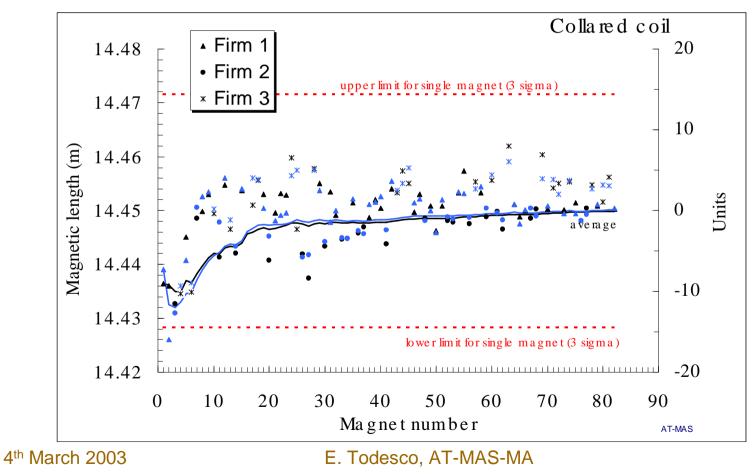
4th March 2003

Field quality status: randoms per X-section

- The collared coil is the main source of randoms: all other effects (persistent, decay ...) are much smaller [L. Bottura talk]
 - Global random < spec mixing firms in different arcs seems ok</p>

Contents

- What is large and what is tight
- Limits to field quality steering towards beam dynamics
 - Models versus measurements
 - + Time structure of production (see also talk of P. Fessia)
 - + (Correlations from collared coil to operational conditions)
- Status of field quality (see also talks of S. Fartoukh and S. Sanfilippo)
 - + Systematics
 - Randoms
- Orrective actions
 - Random BdL
 - Systematic odd multipoles
- Conclusions



Corrective actions: integrated main field

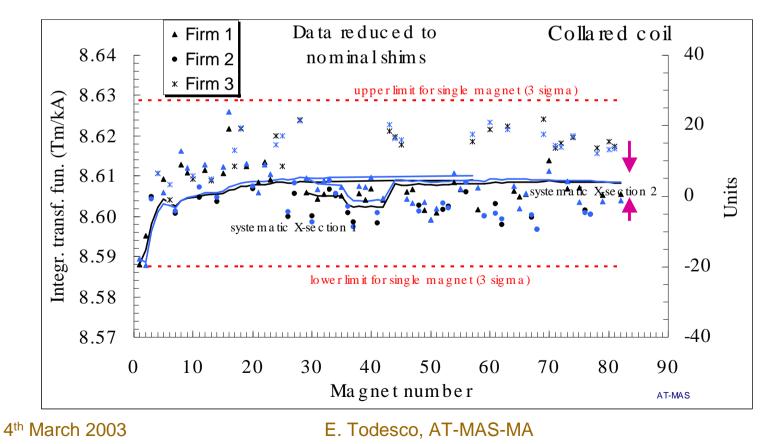
Steering of magnetic length

- Magnetic length has a very low spread (3 units)
- It can be used to steer BdL

Corrective actions: integrated main field

Addition of iron laminations

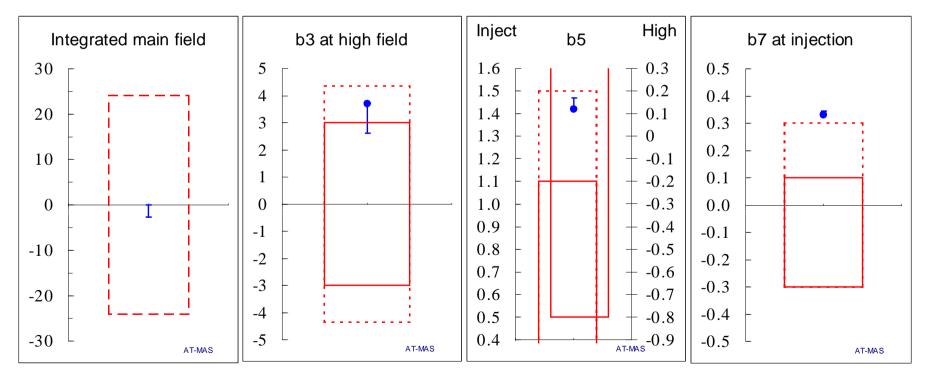
- + Foreseen in the specification
- Add 100 mm max (to avoid ramp splice)
- Take out 100 mm or more (... but expensive nested laminations)


Maximal effect

- In prototype design: no nested laminations in the end, ±100 mm of laminations ⇒ ± 100*0.18 = ± 18 mm more in magnetic length (± 13 units)
- With nested laminations (very effective b2 optimization in heads), substituting nested with iron increases field of 10% only, therefore ±100 mm of laminations ⇒ ±100*0.10 = ±10 mm more in magnetic length (±7 units)
- We have now a very limited effect (14 units can be recovered at maximum)

Corrective actions: integrated main field

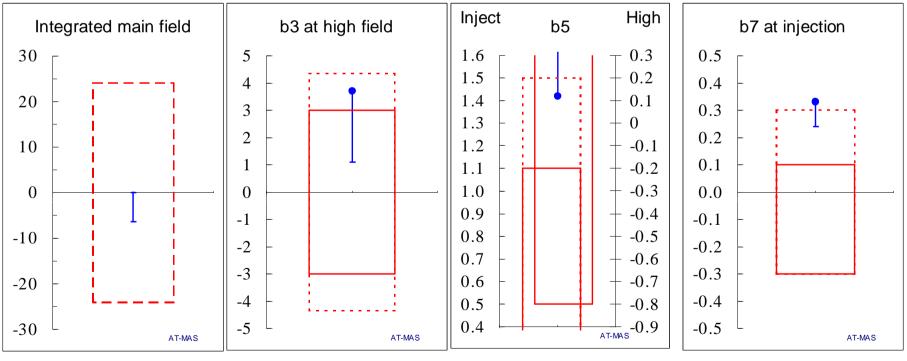
- Now: 17 units difference between Firm 3 and Firm1-2
 - Origin of the difference under analysis
 - Correction with magnetic length: 50 mm more in Firm 1-2, 100 mm less in Firm 3 (10 units recoverable, almost cost neutral)


Present situation

- ⋆ b₃ of 3.8 units at high field (optimal* 3 units, mortal 4.35 units, lower limit –3 units): around –2 unit needed
- → b₅ of 1.40 units at injection (optimal* 0.5 units): around –0.9 units needed
- *b*₇ of 0.33 units at injection (optimal* 0.0 units, bad at 0.4-0.5 units): -0.33 units needed
 *S. Fartoukh, priv. commun., 20.03.2003
- First handle: polar shims
 - The spec. on prestress (±15 MPa) allows to change shims of ±0.12 mm, if coil size is under control
 - + Shims are quantized in 0.05 mm, in the spec we have ± 0.10 mm
 - ✤ One could push up to 0.15 mm (±18 MPa, considered not critical)
 - Problem: if coil size is not measured any more
 - Very fast action

Solution 1: 0.1 mm change of outer polar shim to steer b₃

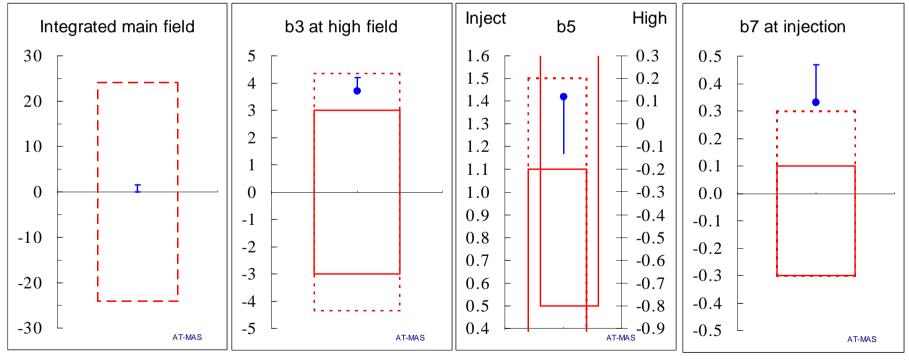
- + Some influence on $\Delta b_3 = -1.2$ units (enough ?)
- Negligible influence on b_5 and b_7 (less than 0.1 units)
- Negligible influence on main field (-3 units)



4th March 2003

Solution 2: change of both polar shims to steer b₃

- ✤ A change of -0.1 mm in inner and outer polar shims: larger effect on b₃ -2.6 units (probably enough to steer b₃ along production)
- + Influence on b_5 : +0.3 units (bad, wrong direction)
- Some influence on main field (6.5 units)

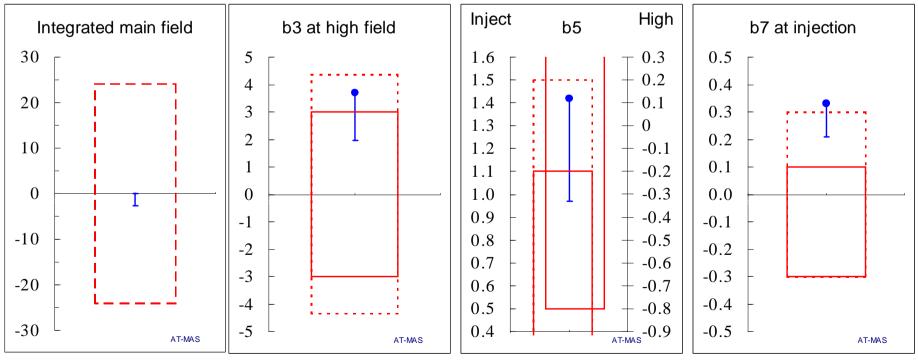


4th March 2003

Solution 3: change of both polar shims to steer b₅

- ✤ A change of +0.1 mm in inner and -0.1 mm in outer polar shims:
- + Influence on b_5 : -0.25 units (not so large)
- Negligible influence on main field (1.5 units)
- * Negligible influence on b_3 (0.5 unit), some on b_7 (0.15 unit)

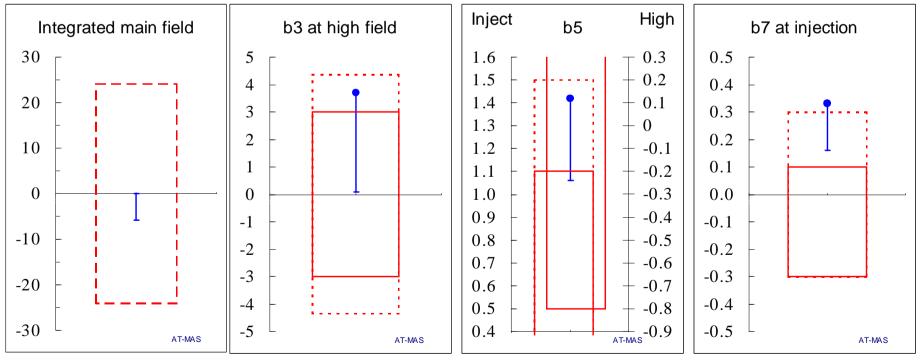
4th March 2003


- Second handle: midplane insulation (and polar shims)
 - In ¼ of aperture, on the midplane we have
 - 0.125 mm U-shaped insulation in the midplane on both layers
 - 0.025 mm sticky apical U-shaped insulation on the outer layer
 - One can only increase this electrical protection
 - + This increase pushes down b_3 , b_5 and b_7
 - This action involves a substitution of material in the baseline
 - Simplest action: change the U in both layers
 - Quantization: 0.025 mm per ¼ of aperture (to be verified)
 - One can compensate with a reduction of polar shims
 - Strong impact on multipoles
 - Positive: small changes needed
 - Negative: more sensitive to dimensions of components

Solution 4: 0.10 mm more in midplane (inner&outer layer)

- Small pre-stress variation of 6 MPa (±15 MPa is the specification)
- * $\Delta b_3 = -1.8$ units this bring b_3 at around 2 units at high field
- + $\Delta b_5 = -0.45$ units
- * $\Delta b_7 = -0.12$ units

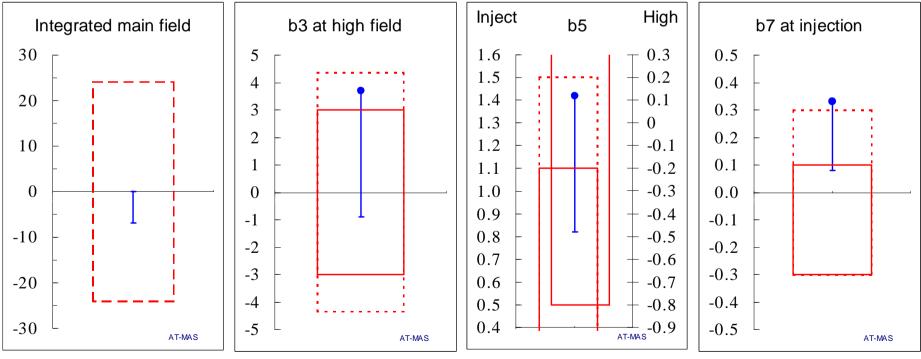
margin on b_3 and b_5 , better b_7


4th March 2003

Solution 5: midplane 0.10 mm more, poles 0.05 mm less

- Same pre-stress Some variation of BdL (6 units)
- + $\Delta b_3 = -3.6$ units this bring b_3 at around 0 units at high field
- * $\Delta b_5 = -0.36$ units at the limit at injection
- + $\Delta b_7 = -0.17$ units

very safe on b_3 , better b_7 , hang on b_5


4th March 2003

- Solution 6: midplane 0.15 mm more, poles 0.05 mm less
 - Negligible pre-stress variation (3 MPa) some effect on BdL
 - + Δb_3 =-4.6 units

 - * $\Delta b_7 = -0.25$ units

everything within our draconian targets

4th March 2003

Third handle: copper wedges

- Same collar shape
- Same midplane insulation
- Work in progress (C. Vollinger)

Conclusions

- Beam dynamics specifications are very tight for a₄, b₅
- Limits to field quality steering towards beam dyn. limits
 - Model: corrective actions expected to work within ±20%
 - Correlations: bad for a₄, fair for magnetic lenght, a₂, b₅

Present status

- (Randoms), systematics skew and even normal within specs
- Systematics odd normal may need actions with present specs
- Mixing seems possible and is now the baseline
- Corrective actions
 - BdL: use laminations
 - Odd multipoles: polar shims or midplane insulation

Acknowledgements

- J. Billan, G. Brun, G. Busetta, R. Camus, J. Cid, P. Galbraith, G. Molinari, A. Musso, G. Peiro, X. Reynes (measurements at 300 K)
- M. Bajko, M. Cornelis, P. Fessia, C. Lanza, J. Miles, M. Modena, D. Perini, J. Rinn, F. Savary, A. Schiappapietra, G. Spigo, J. Vlogaert (project engineers)
- + F. Bertinelli, P. Lienard, L. Rossi, D. Tommasini, N. Siegel
- M. Aleksa, S. Russenschuck (models)
- L. Bottura, S. Sanfilippo, L. Walckiers (measurements at 1.9 K)
- O. Bruning, S. Fartoukh, F. Schmidt (beam dynamics)
- S. Caspi, R. Gupta (on-line help)
- S. Leone, F. Todesco

Les supporters du LHC? Extraordinaires!

Defensement MC, qui n'un odern march and place dans folder dates annues annues a parte in parte mission services or portee. A La Chane de Frend, de dui d'incorri mere cardie trace que porte il, structure leur elles.

too late

S. Francisco, January 2003

4th March 2003