Report on field quality in the main LHC dipole collared coils: November-December 2003

E. Todesco, AT-MAS-MA

This report gives data relative to field quality measured in collared coils during the period November 1– December 31 2003, comparison to beam dynamics targets and status of the holding points. Updated graphs can be found in the LHC-MMS field quality observatory http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/Obs.html.

The dashboard

EDMS n. 439482

- Available measurements: 275 collared coils, 200 cold masses, 74 cryodipoles.
- In these two months, 57 collared coils: 17 from Firm1, 8 from Firm2 and 32 from Firm3.

What's new

- **Production rate:** Notwithstanding Christmas holidays, production rate has ramped up to 28.5 collared coils per month. Firm3 is at 3.5 collared coils per week, and is producing more than Firm1 and Firm2 together. Firm1 and Firm2 are at 2.0 and 1.0 collared coils per week respectively.
- Length of feedback loop: The delay between collared coil magnetic measurements and cold test is stable at 12 months (in average), and at 2.5 months (minimal, obtained for 3038).
- **Cold tests:** Results of this year show that it will not be possible to measure the magnetic field of all dipoles at 1.9 K at CERN. A discussion about the size and the strategy of the sampling has been started. More information can be found in the web site of the Field Quality Working Group: http://fqwg.web.cern.ch/fqwg/hmmm/hmmm.html
- Coil size: Firm1 is still producing outer layers with large azimuthal coil size, which is forcing to use non-nominal shims up to 0.2 mm less with respect to nominal. This has a non-negligible effect on main field and normal sextupole. Details in Section 1 and in the report by I. Vanenkov, see also http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/obs_coil.html
- Switch to cross-section 3: the addition of 0.125 mm insulation (X-section 3) in the coil mid-plane is now the baseline. All manufacturers are producing X-section 3. The total number of magnets with X-section 1 and 2 is 35 and 139 respectively, i.e. the second octant will contain at most 20 magnets with X-section 2 and 134 with X-section 3.
- **Trends in main field:** collared coil data of the more recent production show that the difference between firms is disappearing. More information in Section 3 and Appendix A.
- Integrated main field spread: The spread of integrated main field is within targets in the collared coil. The spread is mainly due to higher values in Firm3 with respect to Firm1 and 2. Indeed, both cold mass data and measurements in operational conditions show that this difference is reduced after the assembly of the iron yoke. No corrective action on ferromagnetic lamination is necessary, but the situation should be continuously monitored.
- **Trends in odd multipoles:** we have around 100 collared coils with X-section 3. Systematic b_3 and b_5 are within the target range in optimal positions. Systematic b_7 is 0.23 units larger that the upper limit, corresponding to a value of 0.29 units at injection (beam screen included).
- **Trends in skews:** the large systematic *a*₄ in Firm2 observed in the previous report (0.9 units) is getting smaller in the more recent production (around 0.3 units). More information in the Crisis Unit web page http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/a4_firm2.html and in Appendix B.
- **Trends in skews:** No effect of cross-section 3 on a_2 and a_4 as expected.
- Estimates of random errors: We present for the first time an analysis of the random multipoles in cross-section 3. Details are given in Section 9.

1. Measured magnets and assembly data

- 57 new collared coils have been measured (collared coils 219th to 275th)
 - o 17 of Firm1 (1065, 1072, 1073, 1075-1079, 1081-1089)
 - o 8 of Firm2 (2046, 2047, 2051, 2059, 2060, 2062, 2064, 2066)
 - o 32 of Firm3 (3094-3101 and 3103-3126).

Fig. 1: Number of magnets measured at CERN at 1.9 K and at the manufacturers at room temperature at different stages of assembly procedure

- Cross-section: all magnets 57 collared coils have X-section 3. Total number of magnets with crosssection 1 and 2 is 35 and 139 respectively. We will have at most 20 magnets with cross-section 2 in the second octant. 101 magnets have been manufactured with X-section 3 up to now.
- Shims are nominal in Firm2 and in Firm3. On the other hand, in Firm1 all manufactured collared coils have non-nominal shims within 0.1 mm on the inner layer and within 0.2 mm for the outer. Since in both cases layers are too large, thus imposing smaller shims, this has a relevant impact on main field and normal sextupole (both lower than nominal values).

Fig. 2: Thickness of the polar shims used in the collared coils

2. Estimated coil waviness

 Coil waviness estimated from the variation of the multipoles along the axis is below 30 microns. The only exception is aperture 2 of 2046 (253th in Fig. 3). The general situation of this parameter is very good in all firms.

Fig. 3: Estimated coil waviness in the straight part of the measured collared coils (black dots: aperture 1, blue dots: aperture 2).

3. Magnetic length and transfer function

- Magnetic lengths of collared coils 219th to 275th are well within targets (see Fig. 4). The spread in magnetic length is very low (3 units).
- Firm3 is producing collared coils with a magnetic length 5 units smaller than Firm1. Firm2 values are in between.

Fig. 4: Magnetic length of the measured collared coils (black dots: aperture 1, blue dots: aperture 2)

- Collared coil 1076 (248th in Figs. 5 and 6) has a very low main field, which is mainly due to nonnominal shims.
- In the more recent production, the main field is decreasing in Firm3, and increasing in Firm1. Latest values show that the difference between firms is disappearing. More information in Appendix A.
- In general, the introduction of cross-section 3 has shifted down the main field by less than 5 units.

Fig. 5: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines).

Fig. 6: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

- The spread of the integrated transfer function in all collared coils is 7.7 units (one sigma), i.e. within the target of 8 units.
- Cold mass data show that the systematic difference between firms is reduced by the iron yoke (see Appendix A and http://fqwg.web.cern.ch/fqwg/031111/031111.html). This is confirmed by measurements at 1.9 K. Therefore, we can expect that in operational conditions the main field spread is furtherly reduced with respect to the 7.7 units observed in collared coils. We therefore implement no corrective action, with the exception of acting on isolated magnets showing anomalous main field due to non-nominal shims.

Fig. 7: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines)

Fig. 8: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

4. Summary of systematics

Best estimates of skew and even normal systematics are given in Fig. 9, with an error at 95% confidence limit (two sigma). All the multipoles are within specifications. Details are given in sections 6 and 7.

Fig. 9: Best estimate for systematic skew multipoles and even normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics.

- Best estimates for systematic odd normal multipoles are shown in Fig. 10. In the left part, raw data are plotted. This gives the actual situation for global values relative to all manufactured collared coils, which are slowly moving towards optimal ranges: b₃ and b₅ are larger than the upper specifications of 0.4 and 0.34 units respectively. For the first time, the systematic normal sextupole is within the hard target of 4.35 units at high field.
- In the right part of Fig. 10, data are reduced to nominal shims and separated according to the two cross-sections (35 collared coils have cross-section 1, 139 have cross-section 2, 101 have cross-section 3). With cross-section 3, b₃ is within targets, 1.6 units below the upper limit (i.e., 1.7 units at high field), and also b₅ is within targets, 0.17 units below the upper limit (i.e., 0.96 units at injection). Finally, b₇ is 0.23 units larger than the limits (i.e. 0.29 units at injection).

Fig. 10: Best estimate for systematic odd normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics. Raw data (left) and data reduced to nominal shims and separated according to different cross-sections (right).

5. Summary of systematic differences between firms

The relevant systematic difference between firms in the main field is disappearing. The more relevant signature of Firms is in b_7 .

• Normal 14th pole: *b*₇ at Firm2 is 0.35 units lower than Firm2 and Firm1. This difference is three to four times the natural sigma within the same manufacturer measured in cross-section 3.

We observe a small systematic difference between firms (from one to two times the natural sigma within the same manufacturer) in the following cases.

- Normal decapole b_5 : Firm1 has a systematic b_5 of 0.7 units larger than Firm2-3. This difference is two times the natural sigma within the same manufacturer.
- Skew sextupole a₃: Firm3 has a systematic a₃ of 0.65 units, against –0.3 units in Firm2, Firm1 being at 0.0 units. This difference is two times the natural sigma within the same manufacturer.
- Skew octupole a_4 : Firm2 has a systematic a_4 of 0.4 units, against 0.0 units in Firm2 and Firm1. This difference is equal to the natural sigma within the same manufacturer.

No systematic differences between firms are visible in a_2 , $b_2 b_3$ and b_4 .

6. Systematic skew multipoles

- Systematic skew multipoles a_2 , a_3 and a_4 are within beam dynamics limits (see Figs. 11-13). We have a large margin for the a_3 , whereas beam dynamics limits are tighter for a_2 and a_4 .
- In the production of these two months, we observe a reduction of the spread between firms in a_3 and a_4 analysed in the previous report (September-October 2003):
 - The high positive values of a₄ of 0.5 to 1.5 units observed in Firm2 between collared coils 100th and 200th are not present any more (see Fig. 13). The average a₄ in the production of these two months in Firm2 is 0.35 units. The situation is monitored and a crisis meeting to inform project engineers has been held. More information in Appendix and in the Crisis Unit web page http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/a4_firm2.html
 - Systematic a_3 in collared coils from Firm3 is decreasing from 0.9 units of previous months Fig. 12, collared coils from 150^{th} to 220^{th}) to around 0.5 units (see Fig. 12, from 220^{th} to 275^{th}). This parameter is anyway well inside the target and therefore there is no concern about this multipole.
- The introduction of cross-section 3 produced no effect on a_2 and a_4 , as expected.

Fig. 11: Average a_2 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 12: Average a_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 13: Average a4 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

7. Systematic even multipoles

For each multipole being subject to beam dynamics specifications, we present two separated plots for the systematic per aperture, plus a plot of the systematic per beam, i.e. the average of both apertures (that should be zero due to two-in-one symmetry).

7.1 Normal quadrupole

• The systematic per aperture is within specifications in both apertures (see Figs. 14 and 15).

Fig. 14: Average *b*₂ in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 15: Average b_2 in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (blue line) and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

• The systematic normal quadrupole per beam is within specifications (see Fig. 16).

Fig. 16: Average b_2 in the straight part of collared coils ((black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (soild line) and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

7.2 Normal octupole

- The systematic per aperture is within specifications in both apertures (see Figs. 17 and 18).
- The systematic per beam is also within specifications (see Fig. 19).

Fig. 17: Average b_4 in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 18: Average *b₄* in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 19: Average b_4 in the straight part of collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

8. Systematic odd multipoles

8.1 Normal sextupole

- Data not reduced to nominal shims and not separated according to different cross-section show a
 negative trend due to the introduction of cross-section 2 (at collared coil 30th) and 3 (around collared
 coil 140th, see Fig. 20).
- The introduction of cross-section 3 has brought b₃ in the upper half of the target range (see Fig. 21).
 Some collared coils of Firm1 feature a rather low b₃ due to non-nominal shims.
- In cross-section 3, b₃ values show a low spread for Firm2 and Firm3 (standard deviation of 0.5 to 0.6 units), whilst for Firm1 data have a larger spread (standard deviation of 1.5 units). The spread in Firm1 is partly due to non-nominal shims: when this effect is subtracted, the standard deviation goes to 1.1 units.
- Average b₃ in cross-section 3 is at -5.6, -4.1 and -3.2 units in Firm1, 2 and 3 respectively, showing a small difference between Firms.

Fig. 20: Average b_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 21: Average b_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: ap. 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles. Data reduced at nominal shims and separated according to cross-section type.

8.2 Normal decapole

- Data not reduced to nominal shims and not separated according to different cross-section show a
 negative trend due to introduction of cross-section 2 (see Fig. 22, from 35th to 140th) and then due to
 the introduction of cross-section 3 (same Figure, after 140th).
- Indeed, when data are separated according to cross-sections and reduced to nominal shims, one finds that the average b₅ in all cross-sections is stable after a transient due to low statistics (see Fig. 23).
- Cryodipoles with the cross-section 3 should feature 0.96 units of b₅ at injection. This places b₅ safely within the target range, not far from the centre of the range.
- Spread of b₅ for cross-section 3 is very similar in all firms: around 0.25 units.
- Average b₅ for cross-section 3 is at 0.30, -0.42 and -0.40 units in Firm1, 2 and 3 respectively. Therefore, the high value of this multipole in Firm1 is confirmed: this feature was present already in cross-section 1 and 2.

Fig. 22: Average b_5 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 23: Average b_5 in the straight part of the collared coil (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

8.3 Normal 14-th pole

- The introduction of cross-section 3 reduced b₇ of 0.22 units in Firm2, of 0.12 units in Firm1, but had no effect in Firm3. This anomaly in Firm3 is mainly due to a positive trend of b₇ in X-section 2 *see Fig. 24, from 100th to 180th) the effect of the correction is smaller than expected.
- Firm2 has a very low average *b*₇ (0.75 units, i.e. 0.35 units less than Firm1 and Firm3), as it is observed in cross-section 2: this is one of the few cases where a non-negligible difference between Firms is observed.
- Cryodipoles with the cross-section 3 should feature 0.29 units of *b*₇ at injection. This would place *b*₇ above the target, but within the previous target of 0.30 units (see Fig. 31).

Fig. 24: Average b_7 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles.

Fig. 25: Average b_7 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 74 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

9. Random multipoles

Having 101 collared coils with X-section 3, we can assess for the first time the random component in this new baseline.

- The standard deviation of magnetic length, main field, bending strength, and multipoles are shown in Fig. 26. They are separated according to the three cross-sections. One can observe that cross-section 1 showed an important out of target in *b*₃ and *b*₅, whereas cross-section 2 and 3 are all within tolerances. Please note that these data are not reduced to nominal shims. In general, the spread in cross-section 3 is similar to the spread in cross-section 2.
- In cross-section 3, the spread in *b*₃ is of 1.4 units but goes down to 0.9 units when the contribution of non-nominal shims is taken out.

Fig. 26: Random component in the measured collared coils, separated according to different cross-sections.

• We give an estimate of the actual spread due to the geometric component in the first two arcs. We assume that the first arc is made up with X-section 1 and 2, and that the second arc is made up with cross-section 3 plus 20 magnets with X-section 2 of Firm3 (see Fig. 27). In the first arc, random b₃ is 2.1 units, and in the second arc is 1.9 units, due to the mixture of cross-sections and to non-nominal shims. These values are expected to be reduced by 18% when the yoke is assembled, and then one has to add the random components due to persistent currents (0.5 units). Summing in quadrature, one obtains 1.7 units in the second arc. This value should go down to 1 unit for the successive arcs if nominal shims are used and if no changes of cross-section are carried out, as expected.

Fig. 27: Estimate of random component in the first and second arc due to collared coils.

10. Acknowledgements

Magnetic measurements have been taken through instrumentation of the AT-MTM-IF section, and are now performed by firm personnel. Measuring system developed by D. Cote, P. Galbraith, D. Giloteaux, V. Remondino, J. Billan. Data at 1.9 K have been taken and made available by the AT-MTM-OP and AT-MTM-AS sections. We wish to acknowledge L. Bottura, V. Chohan, L. Rossi, S. Sanfilippo, W. Scandale, for valuable help and discussions. Thanks to C. Vollinger, E. Wildner and V. Remondino for data analysis. We acknowledge P. Hagen and C. Vollinger for useful comments on the manuscript.

Appendix A: spread in bending strength

The spread in bending strength is mainly due to the spread in the transfer function, i.e., the main field in the straight part divided by the current. Indeed, the magnetic length has a very low spread (3 units) and therefore plays a less relevant role. The phenomenology of the data of collared coils and cold masses is now rather clear and is shown in Figs. 28 and 29.

- In the collared coil (see Fig. 28), all Firms started producing very similar transfer functions, but soon after 20-30 coils a systematic difference of around 20 units between Firm3 and Firm1-2 has been observed. With the introduction of cross-section 3, the transfer function has decreased in Firm3 of around 5 units. In the more recent production, Firm3 is decreasing and Firm1 and Firm2 are increasing, so that the spread between Firms is now very low (less than 10 units).
- These patterns of trends are confirmed by the cold mass data (see Fig. 29). In particular, the fine structure of transfer function trends observed for collared coils is also seen in cold masses. This gives a very strong indication of a high precision of all measurement systems (at least 5 units), as shown during the calibration campaign in July 2003 by S. Pauletta.
- The only difference in the cold mass data is that Firm3 values are around 5 units lower than in the collared coil (see Fig. 28 and 29). This reduces the spread between firms observed in the production of collared coils 50th to 250th.
- Data at 1.9 K confirm the cold mass data: the standard deviation of the spread in the correlation with cold mass is 3 units (see Fig. 30, right). Indeed, collared coil data show as expected a worse correlation, with Firm3 values on the lower side (see Fig, 30, left).

Fig. 30: Correlations between transfer function measured at 1.9 K at high field and measurements in collared coil (left) and in cold mass (right).

Origins of these differences are not yet understood. Indeed, the order of magnitude of the errors
necessary for getting these values is close to fabrication tolerances: 20 units of transfer function can
be induced by a different coil radius of 60 micron only.

The conclusions are the followings:

- Our set of data is consistent, both at room temperature and at 1.9 K.
- Trends in transfer function are changing along the production and therefore have to be continuously monitored. In particular, one should verify if the lower increase of the transfer function at Firm3 is confirmed also for cross-section 3.
- The overall spread in integrated transfer function is within targets and no correction through the addition of ferromagnetic laminations is needed.

Appendix B: systematic a4 in Firm2

The measurements of a_4 in Firm2 are plotted in Fig. 31. We also plot a moving average of this multipole over 5 collared coils (i.e., 10 apertures). One can observe that a_4 has always been positive in Firm2, and that the value has drifted from an average of 0.2-0.3 units up to 0.5 units in the more recent months (collared coils 120^{th} to 200^{th}). The production of the last two months is showing a lower average (between 0.2 and 0.3 units). A crisis meeting has been held with Project Engineers; we summarize here the results of the discussion, that can be found in http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/a4_firm2.html

- The large *a*₄ values are not due to X-section 3, since they are observed also in collared coils of X-section 2. Moreover, collared coils with X-section 3 of the other Firms do not show this problem.
- The large a₄ values are also observed at 1.9 K.
- No correlation is found with *a*₂: therefore, the coil displacement necessary to give such a large *a*₄ is not a simple shift of the coil midplane.
- It seems improbable that such a multipole is due to asymmetries in the coil dimensions, since in Firm2 no rule is used for selecting upper and lower poles. The multipole should be generated during the process of coil assembly or during the collaring.

Fig. 31: Measured a4 in the straight part of the collared coil in Firm2 (dots), and moving average over 5 collared coils (10 apertures, solid line)

Appendix C: collared coil assembly data

Table I: Magnet number, collared coil progressive number used in all figures, and cross-section type (data available on January 30 2004).

magnet	cc number	X-section												
1001	1	1	1071	214	3	2001	3	1	3001	4	1	3073	171	2
1002	2	1	1072	238	3	2002	11	1	3002	6	1	3074	172	2
1003	5	1	1073	239	3	2003	7	1	3003	10	1	3075	174	3
1000	8	1	1070	218	3	2000	20	1	3004	13	1	3076	175	2
1004	0	1	1074	210	5	2004	20	1	2005	13	1	2077	200	2
1005	9	1	1075	221	3	2005	14	1	3005	17	1	3077	200	3
1006	12	1	1076	248	3	2006	30	1	3006	18	1	3078	184	3
1007	15	1	1077	225	3	2007	27	1	3007	24	1	3079	183	3
1008	16	1	1078	235	3	2008	26	1	3008	25	1	3080	182	3
1009	19	1	1079	233	3	2009	34	1	3009	28	1	3081	195	3
1010	21	1	1081	244	3	2010	33	1	3010	57	1	3082	213	3
1011	22	1	1082	252	3	2011	56	1	3011	43	1	3083	185	3
1012	23	1	1083	259	3	2012	37	2	3012	44	2	3084	193	3
1013	29	2	1084	255	3	2013	36	2	3013	45	2	3085	196	3
1014	31	2	1085	262	3	2014	41	2	3014	60	2	3086	100	3
1015	32	1	1005	265	3	2014	61	2	3015	63	2	3087	207	3
1015	32	2	1000	205	5	2013	40	2	2016	60	2	20007	207	2
1010	35	2	1007	200	3	2010	40	2	3010	69	2	3000	206	3
1017	38	2	1088	269	3	2017	52	2	3017	72	2	3089	210	3
1018	39	2	1089	275	3	2018	53	2	3018	71	2	3090	212	3
1019	40	2	1090	277	3	2019	59	2	3019	74	2	3091	215	3
1020	64	2	1091	279	3	2020	62	2	3020	80	2	3092	216	3
1021	42	2	1092	278	3	2021	67	2	3021	78	2	3093	217	3
1022	47	2	1093	287	3	2022	68	2	3022	81	2	3094	219	3
1023	49	2	1094	290	3	2023	76	2	3023	84	2	3095	220	3
1024	50	2	1095	291	3	2024	126	2	3024	87	2	3096	222	3
1025	51	2	1000	201	3	2025	77	2	3025	89	2	3007	224	3
1020	10	2	1050	230	5	2023		2	0020	400	2	20001	224	0
1026	46	2				2026	83	2	3026	108	2	3098	223	3
1027	54	2				2027	85	2	3027	92	2	3099	226	3
1028	55	2				2028	90	2	3028	93	2	3100	227	3
1029	58	2				2029	91	2	3029	95	2	3101	228	3
1030	65	2				2030	96	2	3030	98	2	3103	229	3
1031	66	2				2031	100	2	3031	202	3	3104	234	3
1032	70	2				2032	105	2	3032	203	3	3105	236	3
1033	73	2				2033	131	2	3033	206	3	3106	237	3
1034	75	2				2034	117	2	3034	101	2	3107	240	3
1034	70	2				2034	120	2	2026	101	2	2100	240	2
1035	79	2				2035	130	3	3030	103	2	3100	241	3
1030	02	2				2030	115	2	3037	107	2	3109	243	3
1037	86	2				2037	122	2	3038	111	2	3110	245	3
1038	88	2				2038	137	2	3039	113	2	3111	246	3
1039	97	2				2039	141	2	3040	187	3	3112	249	3
1040	102	2				2040	145	3	3041	110	2	3113	250	3
1041	99	2				2041	139	2	3042	116	2	3114	251	3
1042	106	2				2042	135	2	3043	119	2	3115	254	3
1043	186	2				2043	147	3	3044	118	2	3116	256	3
1044	121	2				2044	159	2	3045	120	2	3117	257	3
1044	0/	2				2044	201	2	3046	120	2	3118	258	3
1045	34	2				2045	201	5	3040	125	2	0110	200	5
1046	104	2				2046	253	3	3047	125	2	3119	261	3
1047	109	2				2047	232	3	3048	127	2	3120	263	3
1048	158	2				2048	161	2	3049	129	2	3121	264	3
1049	112	2				2049	190	3	3050	132	2	3122	267	3
1050	114	2				2050	177	2	3051	134	2	3123	273	3
1051	154	2				2051	247	3	3052	136	2	3124	272	3
1052	124	2				2052	169	2	3053	138	2	3125	270	3
1053	153	2				2053	178	3	3054	140	2	3126	271	3
1054	162	2				2054	173	3	3055	142	2	3127	280	3
1055	133	2				2055	101	3	3056	143	3	3128	281	3
1056	193	2				2056	200	5	3057	1//	5	3120	201	3
1050	101	2				2050	209	2	3057	144	2	2129	202	3
1057	128	2				2057	192	3	3058	140	2	0100	203	3
1058	165	2				2058	197	3	3059	148	3	3131	284	3
1059	151	2				2059	231	3	3060	149	3	3132	285	3
1060	166	2				2060	260	3	3061	150	2	3133	286	3
1061	170	3				2061	205	3	3062	152	2	3134	288	3
1062	188	2				2062	230	3	3063	155	2	3135	295	3
1063	176	3				2063	289	3	3064	156	2	3136	292	3
1064	180	3				2064	266	3	3065	157	2	3137	296	3
1065	242	3				2066	274	3	3066	160	2	3138	293	3
1066	189	2				2069	293	3	3068	163	2	3140	294	3
1067	211	2				2072	230	5	3060	164	2	0,70	207	5
1007	211	3				2072	2/0	3	2070	104	2	1		
1008	194	2				2013	291	3	3070	107	2	1		
1069	204	3							3071	179	2	1		
1070	199	3							3072	168	2			