Report on field quality in the main LHC dipole collared coils: March-April 2003

E. Todesco, AT-MAS-MA

This report gives data relative to field quality measured in collared coils during the period March 1– April 30 2003, comparison to beam dynamics targets and status of the holding points. Updated graphs can be found in the LHC-MMS field quality observatory <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/Obs.html</u>.

The dashboard

EDMS n. 385783

- Available measurements: 100 collared coils, 58 cold masses, 24 cryodipoles.
- In these two months, 20 collared coils: 6 from Firm 1, 6 from Firm 2 and 8 from Firm 3.

What's new

- **Production rate**: we observe a strong increase in the rate of collared coil production, from 6 per month (September 2002 to February 2003) to 10 per month (March and April 2003).
- Field quality workshop: it has been held at CERN in March to discuss field quality steering in the production of the LHC dipoles. Presentations and conclusions are available in http://lhc-div-mms/MMSPAGES/MA/fqwrkshp/fqwrkshp.html.
- **Corrective actions:** a pre-series collared coil with additional mid-plane insulation to correct $b_3 b_5$ and b_7 will be assembled in Firm2 in May. Steps to perform the tuning of iron laminations to minimize systematic differences in integrated main field are in progress.
- Trends in integrated main field: The systematic difference main field in the last two months between manufacturers is 20 units between Firm 2 and Firm 3; values of Firm 1, that where close to Firm 2, are now in between. More information in http://lhc-div-mms.web.cern.ch/lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/bdl.html and in Section 3, pg. 4-5.
- **Trends in** *b*₂: The systematic difference in integrated *b*₂ between Firm 1-2 and Firm 3 of about 1.5 units observed in the previous reports is decreasing. This feature is under investigation. More information in Section 7, pg. 9-10.
- Trends in systematic and random harmonics: New data confirm the previous ones.
- Field quality variation after a re-collaring. Collared coil 2002 has been re-collared for the third time. We observe a field quality variation with respect to the second de-collaring that is similar to what observed in the other cases. The first measurement of a re-collared magnet at Firm 3 has been done on collared coil 3010, but unexpectedly no field quality variation has been measured. More information on http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/2013.html). Both re-collared coils have been accepted.
- **Special experiments**: the dedicated experiment on the effect of the midplane insulation on field harmonics is being completed in building 927 under the supervision of D. Tommasini and H. Kummer. Information at http://lhc-div-mms/MMSPAGES/MA/mid ins.html.
- **Communication**: We recall the web sites available for monitoring field quality in the production:
 - The AT-MAS field quality observatory contains plots relative to multipole trends in the production and comparison to beam dynamics. Now, also plots separated according to the manufacturer are available. At the end of the web page the links with these bimonthly field quality letters are given. Web address: <u>http://lhc-div-mms.web.cern.ch/lhc-divmms/MMSPAGES/MA/Obs.html</u>
 - The AT-MAS repository contains the measurement files of each collared coil or cold mass. Web address: <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/tests</u>
 - The field quality crisis unit contains the information about bad cases (both open and closed), trends and corrective actions that are met during production. Web address: <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/crisis.html</u>

You need a Nice password to retrieve information from these web sites. Comments and suggestions to improve the communication of field quality data are welcome.

1. Measured magnets and assembly data

- 20 'new' collared coils have been measured (collared coils 81st to 100th), plus two old ones (2002 and 3010 that have been re-collared)
 - o 6 of Firm 1 (1036-1039, 1041 and 1045)
 - o 6+1 of Firm 2 (2026-31, plus 2002)
 - o 8+1 of Firm 3 (3022-25 and 3027-30, plus 3010)

Fig. 1: Number of measured collared coils versus time. Dots out of the main trend are relative to collared coils measured more than one time.

- Cross section: from now on, all magnets with cross section 2.
- All shims are nominal, with the exception of three Firm 3 collared coils, featuring 0.05 mm more on the outer layer (outer coil too small); one collared coil has also 0.05 mm less on the inner layer (inner coil too large) [see Fig. 2]. This has a small impact on field quality.

Fig. 2: Thickness of the polar shims used in the collared coils

2. Estimated coil waviness

• Coil waviness estimated from the variation of the multipoles along the axis is getting better in all Firms (among 15 and 25 microns, see Fig. 3).

Fig. 3: Estimated coil waviness in the straight part of the measured collared coils (black dots: aperture 1, blue dots: aperture 2).

3. Magnetic length and transfer function

Magnetic lengths of collared coils 81st to 100th are well within targets (see Fig. 4). A small systematic difference between Firm3 and Firm1-2 of less than 5 units can be observed.

Fig. 4: Magnetic length of the measured collared coils (black dots: aperture 1, blue dots: aperture 2)

- The systematic difference of 17-20 units between Firm 3 and Firm 1-2 in the main field observed in the previous reports is changing. The situation at Firms 2 and 3 is stable, but 3 out of 6 Firm1 collared coils measured in these two months show a higher main field with respect to previous data (see 99th, 94th and 88th in Fig. 5-6). This is pushing up the main field at Firm1. We now observe 20 units between Firm2 and Firm 3, Firm1 being in between.
- This feature is not related to the new cross section: note in Fig. 6 that collared coil 57th has the old cross section, whilst 60th and 63rd have the new one.
- We point out that 20 units of main field could be given by a 0.2 % difference in the radius of the coil, i.e. 56 microns on the inner layer. We do not see related effects on allowed field harmonics.
- The induced sigma is 7.7 units over all collared coils, and of 8.9 units over the last 33 collared coils (11 per manufacturer). This is above the specification (5 units in the cold mass, 6 in the collared coils).
- We remind that the integrated main field (see next page) is the quantity relevant to beam dynamics.

Fig. 5: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines)

Fig. 6: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

- Integrated transfer function in the last 33 collared coils (11 per firm) has a sigma of 11 units. This is larger than the spec (9.6 in the collared coil, 8 units in the cold mass). Data relative to all collared coils and reduced to nominal shims give a sigma of 9.7 units, at the limit of the specification.
- Origins of the problem and possible cures are under analysis. A procedure for adding magnetic laminations in Firms showing low field and reducing their number in Firm3 has been started. This could cure up to 14 units of systematic difference. The impact of adding ferromagnetic laminations on magnetic length has been tested on two cold masses at Firm2, confirming the expected results (see web page <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/lamin.html</u> for more information).

Fig. 7: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines)

Fig. 8: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

4. Summary of systematics

Best estimates of skew and even normal systematics are given in Fig. 9, with an error at 95% confidence limit (two sigma). All the multipoles are within specifications. Details are given in Sections 6 and 7.

Fig. 9: Best estimate for systematic skew multipoles and even normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics.

- Best estimates for systematic odd multipoles are shown in Fig. 10. In the left part, raw data are plotted. This gives the actual situation for the manufactured collared coils: b_3 and b_5 are larger than the upper specifications of 2.15 and 0.71 units respectively.
- In the right part of Fig. 10, data are reduced to nominal shims and separated according the two cross-sections (35 collared coils have cross-section 1, 65 have cross-section 2). With the new X-section, b₃ b₅ and b₇ are larger than the specification of 1.07, 0.42 and 0.30 units respectively.

Fig. 10: Best estimate for systematic odd normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics. Raw data (left) and data reduced to nominal shims and separated according to different cross-sections (right).

5. Summary of systematic differences between firms

From the last two reports, we started to make a preliminary analysis of what are the main systematic differences between firms in collared coil data. We observe a relevant systematic difference between firms only for the main field:

• Main field: Firm 3 is higher than Firm 2 of around 20 units, Firm1 being in between (see Fig. 5). The

global sigma (i.e. the sigma of all collared coils, with a complete mixing of manufacturers) is 10 units. In other cases, we observe a small systematic difference between firms.

- Normal decapole *b*₅: Firm 1 is higher than Firm 2-3 of 0.6 units. Global sigma: 0.4 units. This is not negligible compared to the allowed range (0.7 units).
- Normal 14^{th} pole b_7 : Firm 1 b_7 is 0.25 units higher than Firm 2, Firm 3 being in between. Global sigma: 0.14 units. This is rather small if compared to the allowed range (0.5 units).
- Normal sextupole b_3 : Firm 1 is higher than Firm 3 of 1.2 units, Firm 2 being in between. Global sigma: 1.2 units. This is completely negligible compared to the allowed range (7 units).

No systematic differences between firms are visible in a_2 , a_3 , a_4 and b_4 . The previously reported systematic difference in b_2 has been strongly reduced in the last 20 collared coils.

6. Systematic skew multipoles

- Systematic skew multipoles $a_2 a_3$ and a_4 are within beam dynamics limits (see Figs. 11-13). We have a large margin for the a_3 , whilst beam dynamics limits are tighter for a_2 and a_4 .
- Four collared coils from Firm3 show an anomalous *a*₃ (see Fig. 12); this is not worrying for beam dynamics since margins are large.

Fig. 11: Average a_2 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 12: Average a_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 13: Average a4 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

7. Systematic even multipoles

For each multipole subject to beam dynamics specifications, we present two separated plots for the systematic per aperture, and a plot of the systematic per beam, i.e. the average of both apertures (that should be zero due to two-in-one symmetry).

7.1 Normal quadrupole

- The systematic difference between Firm 1-2 and Firm 3 of about 1.5 units observed in collared coils 40-80 is disappearing. Relations with collar manufacturer are under analysis.
- The systematic per aperture is within specifications in both apertures (see Figs. 14 and 15).

Fig. 14: Average b_2 in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 15: Average b₂ in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (blue line) and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

• The systematic per beam normal quadrupole is within specifications (see Fig. 16).

Fig. 16: Average b₂ in the straight part of collared coils ((black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (soild line) and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

7.2 Normal octupole

- The systematic per aperture is within specifications in both apertures (see Figs. 17 and 18).
- The systematic per beam is also within specifications (see Fig. 19).

Fig. 17: Average b_4 in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 18: Average b₄ in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 19: Average b_4 in the straight part of collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

8. Systematic odd multipoles

8.1 Normal sextupole

- New data confirm the previous ones, with a small upward trend: the systematic in X-section 2 is 1.07 units larger than the limit (see fig. 21).
- Systematic differences between firms are small.
- Cryodipoles with the new X-section should feature 3.9 units of b_3 at high field; this is outside the specification but within the hard limit of 4.35 units given by the correction of chromaticity.

Fig. 20: Average b_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 21: Average *b*₃ in the straight part of the collared coils (black dots: aperture 1, blue dots: ap. 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles. Data reduced at nominal shims and separated according to X-section type.

8.2 Normal decapole

The average normal decapole is stable in Firm1 (around 0.7 units), increasing from around 0.2 to 0.4 units at Firm2, and decreasing from 0.3 to 0.0 units in Firm3. The best estimate for the systematic is stable at 0.37, i.e. 0.4 more than the limit for the collared coil.

Fig. 22: Average b_5 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles.

Fig. 23: Average b_5 in the straight part of the collared coil (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

8.3 Normal 14-th pole

- New data confirm previous trends: new X-section collared coils have a systematic b₇ of around 1.1 units, i.e. 0.3 units more than the upper limit. The associated error is small (0.04 units at 95% confidence level, see Fig. 10).
- Firm1 has an average of 1.20 units, but latest coils are around 1.30 units. Firm2 and Firm3 are stable at 1.0 and at 1.1 respectively. The negative trend in Firm2 has disappeared.
- The best estimate for the systematic is 1.07 units, which corresponds to 0.34 units at injection.

Fig. 25: Average b_7 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 24 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

9. Random multipoles

We repeat the same considerations made in the previous report.

- Random per manufacturer and global random (i.e., the standard deviation of the distribution of all magnets) are shown in Figs. 26 and 27.
- Raw data (see Fig. 26) show an out of tolerance for b_3 and b_5 . This is mainly due to the change of cross-section that shifted down these multipoles of 3 units and 1 unit respectively. The other parameters are within specifications, also in the hypothesis of a complete mixing.
- When data are reduced to nominal shims and split according to the cross-section type, one observes a random *b*₃ out of tolerance in the old X-section: this is due to the upward trend (see Section 7.1, Fig. 21). This is the only out of tolerance in the old X-section.
- We now have a good statistics for the new cross-section: all the multipoles are within specifications, global integrated main field BdL being slightly above the specification.

Fig. 26: Random component in the measured collared coils

Fig. 27: Random component in the measured collared coils. Data reduced to nominal shims and split according to different cross-sections.

10. Holding point results

		Collared coil	Decili	O	
	Magnet name	measure	Result	Comments	
81 st	3022	12/03/03	OK	Non-nominal shims used in the outer layers of both apertures	
82 nd	1036	12/03/03	OK		
83 rd	2026	20/03/03	<mark>Ok-W</mark>	Yellow alarm on multipole b3 in the heads of both apertures NCS	
84 th	3023	20/03/03	ОК		
85 th	2027	21/03/03	<mark>Ok-W</mark>	Yellow alarm on multipole b3 in the head of aperture 1 NCS, red alarm on multipole b3 in the head of aperture 2 NCS	
86 th	1037	25/03/03	ОК	Measurement with the new system - accepted in the hypothesis of mag len smaller of 20 mm - main field smaller of 2.3 mT/kA	
88 th	3024	26/03/03	ОК		
88 th	1038	28/03/03	ОК	Measurement with the new system - accepted in the hypothesis of mag len smaller of 20 mm - main field smaller of 2.3 mT/kA	
89 th	3025	02/04/03	OK	Non-nominal shims used in the outer layers of both apertures	
90 th	2028	02/04/03	OK	Yellow alarm on b3 in the heads of both apertures NCS	
91 st	2029	03/04/03	OK	Yellow alarm on b3 in the heads of both apertures NCS	
92 nd	3027	03/04/03	OK	Non-nominal shims in all layers	
93 rd	3028	08/04/03	OK		
94 th	1045	15/04/03	ОК	Measurement with the new system - accepted in the hypothesis of mag len smaller of 20 mm - main field smaller of 2.3 mT/kA	
95 th	3029	14/04/03	OK		
96 th	2030	16/04/03	OK	Yellow alarm on b3 in the heads of both apertures NCS	
98 th	1039	18/04/03	ОК	Measurement with the new system - accepted in the hypothesis of mag len smaller of 20 mm - main field smaller of 2.3 mT/kA	
99 th	3030	17/04/03	OK		
99 th	1041	29/04/03	ОК	Measurement with the new system - accepted in the hypothesis of mag len smaller of 20 mm - main field smaller of 2.3 mT/kA	
11 th	2002	17/04/03	ОК	Third collaring – multipole change with respect to second collaring (especially b5)	
57 th	3010	26/04/03	ОК	Second collaring – no multipole variations, main field larger of 5 units	
100 th	2031	29/04/03	ОК	Yellow alarm on multipole b3 in the head of aperture 1 NCS, red alarm on multipole b3 in the head of aperture 2 NCS	

Table I: results of the holding point for the measured collared coils

- 2002 has been collared for the third time. Also in this case, we observe a field quality variation which is not negligible. Therefore, there is no indication of a saturation of the effect.
- 3010 has been recollared. This is the first measured impact of recollaring on field quality. No effect is found on multipoles, some change is observed in the main field.
- Both collared coil have been released. Summary of the impact of re-collaring on field quality in Table
 II. Information in http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/1027.html

Table II: Multipole variation due to recollaring, measurements on 6 cases.

Magnet	agnet Ap.		b3	b5	b7	b9	
2002	1	-2.4	0.39	0.18	-0.04	-0.005	
2002	2	-3.0	0.51	0.14	-0.05	-0.003	
2011	1	1.0	-0.80	0.65	-0.28	0.016	
2011	2	0.6	-0.67	0.50	-0.23	0.009	
2013	1	3.4	-0.63	0.54	-0.09	0.024	
2013	2	4.7	-0.38	0.50	-0.11	0.028	
1027	1	-0.3	-0.43	0.25	-0.04	0.007	
1027	2	0.2	-0.46	0.39	-0.05	0.004	
2002	1	-0.2	-0.47	0.63	-0.33	0.085	
2002	2	0.3	-0.22	0.36	-0.23	0.076	
3010	1	5.5	0.06	-0.07	-0.08	0.010	
3010	2	4.2	-0.28	-0.02	-0.11	0.014	

10. Acknowledgements

Magnetic measurements have been taken through personnel and instrumentation of the LHC-MMS-IF and LHC-MMS-MD section; in particular, G. Brun, G. Busetta, R. Camus, P. Galbraith, G. Molinari, A. Musso. Measurements at one of the Firms performed by M. Zehner and R. Moresi. We wish to acknowledge J. Billan, B. Bellesia, F. Bertinelli, L. Bottura, A. Devred, P. Fessia, S. Pauletta, V. Remondino, L. Rossi, S. Sanfilippo, W. Scandale, A. Schiappapietra, I. Vanenkov, E. Wildner for valuable help and discussions. Thanks to C. Vollinger for collared coil analysis and comments on the manuscript.

Appendix A

The link between the progressive number used in Figures and the official name is given in Table III.

						0			
1 st	1001	21 st	1010	41 st	2014	61 st	2015	81 st	3022
2 nd	1002	22 nd	1011	42 nd	1021	62 nd	2020	82 nd	1036
3 rd	2001	23 rd	1012	43 rd	3011	63 rd	3015	83 rd	2026
4 th	3001	24 th	3007	44 th	3012	64 th	1020	84 th	3023
5 th	1003	25 th	3008	45 th	3013	65 th	1030	85 th	2027
6 th	3002	26 th	2008	46 th	1026	66 th	1031	86 th	1037
7 th	2003	27 th	2007	47 th	1022	67 th	2021	87 th	3024
8 th	1004	28 th	3009	48 th	2016	68 th	2022	88 th	1038
9 th	1005	29 th	1013	49 th	1023	69 th	3016	89 th	3025
10 th	3003	30 th	2006	50 th	1024	70 th	1032	90 th	2028
11 th	2002	31 st	1014	51 st	1025	71 st	3018	91 st	2029
12 th	1006	32 nd	1015	52 nd	2017	72 nd	3017	92 nd	3027
13 th	3004	33 rd	2010	53 rd	2018	73 rd	1033	93 rd	3028
14 th	2005	34 th	2009	54 th	1027	74 th	3019	94 th	1045
15 th	¹ 1007	35 th	1016	55 th	1028	75 th	1034	95 th	3029
16 th	¹ 1008	36 th	2013	56 th	2011	76 th	2023	96 th	2030
17 th	3005	37 th	2012	57 th	3010	77 th	2025	97 th	1039
18 th	3006	38 th	1017	58 th	1029	78 th	3021	98 th	3030
19 th	¹ 1009	39 th	1018	59 th	2019	79 th	1035	99 th	1041
20 th	2004	40 th	1019	60 th	3014	80 th	3020	100 th	2031

Table III: relation between magnet numbers used in Figs. 2-25 and official names