Report on field quality in the main LHC dipole collared coils: July-August 2003

E. Todesco, AT-MAS-MA

This report gives data relative to field quality measured in collared coils during the period July 1– August 31 2003, comparison to beam dynamics targets and status of the holding points. Updated graphs can be found in the LHC-MMS field quality observatory <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/Obs.html</u>.

The dashboard

EDMS n. 404650

- Available measurements: 163 collared coils, 104 cold masses, 49 cryodipoles.
- In these two months, 43 collared coils: 9 from Firm1, 12 from Firm2 and 22 from Firm3.

What's new

- **Production rate**: notwithstanding the summer holidays, we had a large increase of production rate: around 20 collared coils per month. Firm3 has reached 2.5 collared coils per week, and has produced as much as Firm1 and Firm2 together.
- Length of feedback loop: The delay between collared coil magnetic measurements and cold test went down from 15 to 12 months (in average), and from 4.5 to 2 months (minimal, obtained for 3038). The delay between cold mass magnetic measurements at 300 K and cold test went down from 7 to 5.5 months (in average), and from 45 to 36 days (minimal, obtained for 3038).
- **Corrective action, integrated main field:** collared coil data show that the systematic difference in integrated main field between Firm3 and Firm1-2 is decreasing. This is due to an increase of integrated main field in Firm1 and Firm2 (see Section 3, pg. 4-5). The overall random component is at the limit of the target. The decision on the corrective action through laminations will be taken after the calibration of the magnetic length and main field of all measuring systems, which has been completed in August.
- **Corrective action, odd multipoles:** six collared coils have been assembled with 0.125 mm more in mid-plane insulation. Results are consistent with simulations, and systematic *b*₃ and *b*₅ are within targets. The Field Quality Working Group of 2nd September has advised to implement this change on all magnets as soon as possible, and the Main Ring Committee of 17th September has approved the change of baseline. More details in Section 8, pg. 12-14 and Appendix B, pg. 17-18. Updated results also at the end of the mid-plane insulation experiment page in http://lhc-div-mms.web.cern.ch/lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/mid_ins.html.
- **Trends in** *b*₃, *b*₅ **and** *b*₇ **in Firm3**: we continue to observe trends in odd normal multipoles in Firm3. More information in Section 8, pg. 12-14.
- Trends in systematic and random harmonics: For all other multipoles, new data confirm the previous ones.
- **Open case, assembly fault:** collared coil 2035 showed large spikes (up to 10 sigma) in multipoles along the axis. These variations can be obtained from simulations by inner radial movements of 0.5 to 0.8 mm of the inner layer close to the pole, such as for 2032. The collared coil is therefore held. More information in Section 10, pg. 16.

1. Measured magnets and assembly data

- 43 'new' collared coils have been measured (collared coils 121st to 163rd)
 - 9 of Firm1 (1044, 1048, 1051-55, 1057 and 1059)
 - o 12 of Firm2 (2024,2033,2035,2037-44 and 2048)
 - o 22 of Firm3 (3046-66 and 3068)

Fig. 1: Collared coil progressive number versus date of magnetic measurement. Dots out of the main trend are relative to collared coils measured more than one time.

- Cross-section: all magnets with cross-section 2, six magnets with additional mid-plane insulation of 0.125 mm (cross-section 3): 2035, 2040, 2043, 3056, 3059, 3060.
- All shims are nominal, with the exception of nine Firm3 collared coils, featuring 0.05 mm more on the
 outer layer (outer coil too small) [see Fig. 2]. This has a small impact on field quality. On the other
 hand, we have one collared coil in Firm1 with 0.1 mm less on both layers (outer and inner layer too
 large), giving a large effect on allowed multipoles.

Fig. 2: Thickness of the polar shims used in the collared coils

2. Estimated coil waviness

 Coil waviness estimated from the variation of the multipoles along the axis is below 30 microns. Collared coil 130th (2035) has one aperture with large waviness (45 microns, see Fig. 3), which is related to an assembly defect similar to the case of 105th (2032). More information in Section 10, page 17.

Fig. 3: Estimated coil waviness in the straight part of the measured collared coils (black dots: aperture 1, blue dots: aperture 2).

3. Magnetic length and transfer function

 Magnetic lengths of collared coils 121st to 163rd are well within targets (see Fig. 4). The spread in magnetic length is very low.

Fig. 4: Magnetic length of the measured collared coils (black dots: aperture 1, blue dots: aperture 2)

- In these two months (collared coil 120th to 163rd in Figs. 5 and 6), Firm3 collared coils have a main field 11 units larger than Firm2 and 10 units larger than Firm1. This previously observed systematic difference between firms (16 between Firm3 and Firm2, and 11 between Firm3 and Firm1) is therefore getting smaller. This is mainly due to an increase of main field in Firm2.
- The sigma is 8 units over all collared coils: this is above the target (5 units in the cold mass, 6 in the collared coils), but we remind that the integrated main field (see next page) is the quantity relevant to beam dynamics.
- No impact of the introduction of cross-section 3 (additional mid-plane insulation) is measured.

Fig. 5: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines).

Fig. 6: Main field in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

- The spread of the integrated transfer function in all collared coils is 10 units (one sigma), i.e. at the limit of the target (9.6 in the collared coil, 8 units in the cold mass). Spread within the same firm is 5 to 6 units. Systematic differences between firms over all collared coils are of 14 units between Firm3 and Firm1, and of 17 units between Firm2 and Firm3. These values are reduced to 13 and 14 units respectively for the collared coils measured during July and August.
- A procedure for adding magnetic laminations in Firms showing low field and reducing their number in Firm3 could correct up to 14 units of systematic difference. The impact of adding ferromagnetic laminations on the magnetic length has been tested at Firm2, confirming the expected results (see web page <u>http://lhc-div-mms.web.cern.ch/lhc-div-mms/MMSPAGES/MA/lamin.html</u> for more information).
- Data of cold masses at 300 K and of cryodipoles at 1.9 K only partially confirm this systematic difference. The calibration of measuring systems (both main field and magnetic length) has been carried out in all manufacturers, and result of the analysis will be ready at the end of September. On the basis of these results, it will be decided if the correction with ferromagnetic laminations will be implemented.

Fig. 7: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and average over all collared coils (solid lines)

Fig. 8: Integrated transfer function (black dots: aperture 1, blue dots: aperture 2) and best estimate of systematic (solid lines). Data are reduced to nominal shims and separated according to different cross-sections.

4. Summary of systematics

Best estimates of skew and even normal systematics are given in Fig. 9, with an error at 95% confidence limit (two sigma). All the multipoles are within specifications. Details are given in Sections 6 and 7.

Fig. 9: Best estimate for systematic skew multipoles and even normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics.

- Best estimates for systematic odd normal multipoles are shown in Fig. 10. In the left part, raw data are plotted. This gives the actual situation for the manufactured collared coils: b₃ and b₅ are larger than the upper specifications of 1.6 and 0.51 units respectively.
- In the right part of Fig. 10, data are reduced to nominal shims and separated according the two cross-sections (35 collared coils have cross-section 1, 122 have cross-section 2, 6 have cross-section 3). With the cross-section 3, b₃ is within target, 1.5 units far from the upper limit (i.e., 1.8 at high field), and b₅ at the lower part of the target window (i.e., 0.5 at injection). b₇ is 0.22 units larger than the targets (i.e. 0.28 at injection). The estimate for b₅ is biased from the absence of data from Firm1, the systematic being defined as the average of the averages of Firm2 and Firm3. A non-biased estimate for b₅ gives values in the centre of the acceptance range (see Appendix B).

Fig. 10: Best estimate for systematic odd normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics. Raw data (left) and data reduced to nominal shims and separated according to different cross-sections (right).

5. Summary of systematic differences between firms

We observe a relevant systematic difference between firms only for the main field:

• Main field: Firm3 is higher than Firm2 of around 15 units, Firm1 being in between (see Fig. 5). This difference (around 3 times the natural spread within the same manufacturer) is getting smaller during the last phase of the production.

In other cases, we observe a small systematic difference between firms (from one to two times the natural sigma within the same manufacturer).

- Normal decapole b_5 : Firm1 has a systematic b_5 of 0.8 units larger than Firm2, Firm3 being in between. This difference is two times the natural sigma within the same manufacturer.
- Skew sextupole *a*₃: Firm3 has a systematic *a*₃ of 0.3 units, against –0.5 in Firm2, Firm1 being in between. This difference is two times the natural sigma within the same manufacturer.
- Normal 14th pole: *b*₇ at Firm1 is 0.25 units higher than Firm2, Firm3 being in between. This difference is between one and two times the natural sigma within the same manufacturer.
- Skew octupole a_4 : Firm2 has a systematic a_4 of 0.3 units, against 0.0 in Firm2 and Firm1. This difference is equal to the natural sigma within the same manufacturer.

No systematic differences between firms are visible in a_2 , b_2 b_3 and b_4 .

6. Systematic skew multipoles

- Systematic skew multipoles a_2 , a_3 and a_4 are within beam dynamics limits (see Figs. 11-13). We have a large margin for the a_3 , whereas beam dynamics limits are tighter for a_2 and a_4 .
- Collared coils from Firm3 manufactured in the last months have a systematic a_3 of about 0.5 units (see Fig. 12); this is not worrying for beam dynamics since margins are large.
- Collared coils from Firm2 manufactured in the last months have a systematic a₄ of about 0.3 units (see Fig. 13); this could be worrying since beam dynamics targets are very narrow. Indeed, the systematic is within target.

Fig. 11: Average a_2 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 12: Average a_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 13: Average *a4* in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic in each aperture (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

7. Systematic even multipoles

For each multipole being subject to beam dynamics specifications, we present two separated plots for the systematic per aperture, plus a plot of the systematic per beam, i.e. the average of both apertures (that should be zero due to two-in-one symmetry).

7.1 Normal quadrupole

The systematic per aperture is within specifications in both apertures (see Figs. 14 and 15).

Fig. 14: Average b_2 in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 15: Average b_2 in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (blue line) and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

• The systematic normal quadrupole per beam is within specifications (see Fig. 16).

Fig. 16: Average b_2 in the straight part of collared coils ((black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (soild line) and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

7.2 Normal octupole

- The systematic per aperture is within specifications in both apertures (see Figs. 17 and 18).
- The systematic per beam is also within specifications (see Fig. 19).

Fig. 17: Average b_4 in the straight part of the aperture 1 collared coils (black dots), best estimate for systematic per aperture (black line), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 18: Average b_4 in the straight part of the aperture 2 collared coils (blue dots), best estimate for systematic per aperture (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 19: Average b_4 in the straight part of collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic per beam (black line) and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

8. Systematic odd multipoles

8.1 Normal sextupole

- Data not reduced to nominal shims and not separated according to different cross-section show a
 negative trend due to the introduction of cross-section 2 (at collared coil 30th) and 3 (around collared
 coil 140th, see Fig. 20).
- Average b₃ in cross-section 2 reduced to nominal shims (see Fig. 21) had a rather small positive trend from the first value of -1.6 units to -0.90 units (average of 122 collared coils). This is mainly due to a positive trend in Firm3, which started from -1.5 units (collared coil 44th), arrived up to +2.0 units (collared coil 118th). Indeed, recent collared coils from Firm3 feature a normal sextupole back to -1.5 units (collared coil 150th to 163rd).
- Systematic differences between firms are negligible.
- Cryodipoles with the cross-section 2 should feature 4.0 units of b₃ at high field; this is outside the specification but within the hard limit of 4.35 units given by the maximum correction of chromaticity.
- Cryodipoles with the cross-section 3 should feature 2.0 units of b₃ at high field; correction of the bias due to the lack of Firm1 data (see Appendix B, page 17-18) gives a value of 1.2 units. This is safely within the targets, and leaves a small geometric contribution to have partial correction of persistent current at injection, giving an optimal starting value for the full-speed production.

Fig. 20: Average b₃ in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 21: Average b_3 in the straight part of the collared coils (black dots: aperture 1, blue dots: ap. 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles. Data reduced at nominal shims and separated according to cross-section type.

8.2 Normal decapole

- Data not reduced to nominal shims and not separated according to different cross-section show a
 negative trend due to introduction of cross-section 2 (see Fig. 22, from 35th to 120th) and then due to
 the introduction of cross-section 3 (same Figure, between 140th and 150th).
- Indeed, when data are separated according to cross-sections and reduced to nominal shims one finds that average b₅ in cross-section 2 is stable between 0.3 and 0.4 units (see Fig. 23).
- In Firm3 b_5 has started with values around 0.15 units (from collared coil 44th to 108th), then it went down to -0.2 units (from 107th to 163rd). This trend could be partially related to what observed in b_3 .
- Systematic differences between firms are up to two times the sigma within the manufacturer: we observe 0.8 units difference between Firm1 and Firm3.
- Cryodipoles with the cross-section 2 should feature 1.4 units of b₅ at injection, i.e. 0.3 units more than the target of 1.1 units.
- Cryodipoles with the cross-section 3 should feature 0.5 units of b₅ at injection; correction of the bias due to the lack of Firm1 data gives values of around 0.8 units at injection. This would place b₅ at the centre of the target range, giving an optimal starting value for the full-speed production.

Fig. 22: Average b_5 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 23: Average b_5 in the straight part of the collared coil (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

8.3 Normal 14-th pole

- Data not reduced to nominal shims and not separated according to different cross-section show values between 1.0 and 1.4 units over the last 100 collared coils (see Fig. 24).
- Average *b*₇ in cross-section 2 is stable between 1.0 and 1.4 units (see Fig. 25).
- Collared coil 2024 (126th on Figs. 30 and 31) has a very low b_7 . This collared coil underwent recollaring, which usually provokes a reduction of b_7 up to 0.2 units.
- In Firm3 b_7 has shown a positive trend in cross-section 2: it went from 1.0 unit to nearly 1.3 units. This could be related to trends observed in b_3 and b_5 .
- Systematic differences between firms are between one and two times the sigma within the manufacturer: we observe 0.3 units difference between Firm1 and Firm2.
- Cryodipoles with the cross-section 2 should feature 0.36 units of b₇ at injection, i.e. 0.26 units more than the target of 0.1 units.
- Cryodipoles with the cross-section 3 should feature 0.23 units of b₇ at injection. This would place b₇ above the target, but within the previous target of 0.30 units (see Fig. 31).

Fig. 24: Average b_7 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles.

Fig. 25: Average b_7 in the straight part of the collared coils (black dots: aperture 1, blue dots: aperture 2), best estimate for systematic (solid lines), and beam dynamics limits for the systematic (red lines) based on correlations with 49 cryodipoles. Data are reduced to nominal shims and separated according to different cross-sections.

9. Random multipoles

We repeat the same considerations made in the previous report.

- Random per manufacturer and global random (i.e., the standard deviation of the distribution of all magnets) are shown in Figs. 26 and 27.
- Raw data (see Fig. 26) show an out of targets for b_3 and b_5 . This is mainly due to the change of cross-section that shifted down these multipoles of 3 units and 1 unit respectively. The other parameters are within specifications, also in the hypothesis of a complete mixing.
- When data are reduced to nominal shims and split according to the cross-section type, one observes a random b_3 out of tolerance in cross-section 1: this is due to the initial upward trend between collared coil 1st and 20th (see Section 8.1, Fig. 21). This is the only out of tolerance in the cross-section 1.
- For cross-section 2, all the multipoles are within specifications, global integrated main field BdL being slightly above the specification.

Fig. 26: Random component in the measured collared coils

Fig. 27: Random component in the measured collared coils. Data reduced to nominal shims and split according to different cross-sections.

10. Holding point results

		Collared coil		
	Magnet name	measure	Result	Comments
125 th	3047	04/07/03	OK-W	Warning due to a red alarm on b4 in the end NCS Ap. 1
126 th	2024	07/07/03	OK-W	Coil has been recollared. Warning due to yellow alarm on coil waviness
				First magnet with additional midplane insulation – large variations on high order multipoles in position 19 Ap. 1 – similar pattern to 2032 (inner shift of
130 th	2035	14/07/03	HOLD	block 6)

Table I: results of the holding point for the measured collared coils (OK are not reported)

- 2024 has been re-collared, but not measured after the first collaring. This is giving higher coil waviness, and a much lower b₇ (see Section 8.3). Updated summary of the impact of re-collaring on field quality can be found in the report of May-June 2003, or on the web site http://lhc-div-mms/MMSPAGES/MA/2013.html.
- 2035 had a spike in all multipoles, in one position, aperture 1, with a pattern very similar to 2032; simulations show that this could be due to inner radial movement of block6 (the block of inner layer close to the pole) of 0.5 to 0.8 mm, in one quadrant only. The collared coil has been held, waiting for results on 2032. This is the first collared coil with midplane shim: there is no indication any relation between this change and the observed field quality anomalies, since they were observed already in 2032 (no additional insulation). The other five collared coils with additional insulation show no field anomalies.

11. Acknowledgements

Magnetic measurements have been taken through instrumentation of the AT-MTM group, and are now performed by firm personnel. Measuring system developed by D. Cote, P. Galbraith, D. Giloteaux, V. Remondino, J. Billan. Data at 1.9 K have been taken and made available by the AT-MTM-AS section. We wish to acknowledge B. Bellesia, L. Bottura, P. Fessia, S. Pauletta, V. Remondino, L. Rossi, S. Sanfilippo, W. Scandale, I. Vanenkov, for valuable help and discussions. Thanks to C. Vollinger and E. Wildner for data analysis and comments on the manuscript.

Appendix A

The link between the progressive number used in Figures and the official name is given in Table II.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 st	1001 21 st 10 ²	10 41 st	2014	61 st	2015	81 st	3022	101 st	3034	121 st	1044	141 st	2039	161 st	2048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 nd	1002 22 nd 10 ²	11 42 nd	1021	62 nd	2020	82 nd	1036	102 nd	1040	122 nd	2037	142 nd	3055	162 nd	1054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 rd	2001 23 rd 10 ²	12 ^{43rd}	3011	63 rd	3015	83 rd	2026	103 rd	3036	123 rd	3046	143 rd	3056	163 rd	3068
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 th	3001 24 th 300	07 44 th	3012	64^{th}	1020	84^{th}	3023	104 th	1046	124 th	1052	144^{th}	3057		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 th	1003 25 th 300	08 45 th	3013	65^{th}	1030	85 th	2027	105 th	2032	125 th	3047	145 th	2040		
7^{th} 2003 27^{th} 2007 47^{th} 1022 67^{th} 2021 87^{th} 3024 107^{th} 3037 127^{th} 3048 147^{th} 27^{th} 8^{th} 1004 28^{th} 3009 48^{th} 2016 68^{th} 2022 88^{th} 1038 108^{th} 3026 128^{th} 1057 148^{th} 319^{th} 9^{th} 1005 29^{th} 1013 49^{th} 1023 69^{th} 3016 89^{th} 3025 109^{th} 1047 129^{th} 3049 149^{th} 311^{th} 10^{th} 3003 30^{th} 2006 50^{th} 1024 70^{th} 1032 90^{th} 2028 110^{th} 3041 130^{th} 2035 150^{th} 311^{tt} 10^{th} 3003 30^{th} 2006 50^{th} 1025 71^{st} 3018 91^{st} 2029 111^{th} 3041 130^{th} 2033 151^{st} 112^{th} 12^{th} 1006 32^{rd} 1015 52^{rd} 2017 72^{rd} 3017 92^{rd} 3027 112^{th} 1049 132^{rd} 3050 152^{rd} 31^{st} 13^{th} 3004 33^{rd} 2010 53^{rd} 2018 73^{rd} 1033 93^{rd} 3028 113^{th} 3039 133^{rd} 1055 153^{rd} 114^{th} 14^{th} 2005 34^{th} 2013 56^{th}	6 th	3002 26 th 200	08 46 th	1026	66 th	1031	86 th	1037	106 th	1042	126 th	2024	146 th	3058		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 th	2003 27 th 200	07 47 th	1022	67 th	2021	87 th	3024	107 th	3037	127 th	3048	147 th	2043		
9^{th} 1005 29^{th} 1013 49^{th} 1023 69^{th} 3016 89^{th} 3025109^{th}1047129^{th}3049149^{th}310^{th}3003 30^{th} 2006 50^{th} 1024 70^{th} 1032 90^{th} 2028 110^{th} 3041 130^{th} 2035 150^{th} 3 11^{th}2002 31^{st} 1014 51^{st} 1025 71^{st} 3018 91^{st} 2029 111^{th} 3038 131^{st} 2033 151^{st} 1 12^{th}1006 32^{nd} 1015 52^{nd} 2017 72^{nd} 3017 92^{nd} 3027 112^{th} 1049 132^{nd} 3050 152^{nd} 31^{st} 13^{th} 3004 33^{rd} 2010 53^{rd} 2018 73^{rd} 1033 93^{rd} 3028 113^{th} 3039 133^{rd} 1055 153^{rd} 1 14^{th} 2005 34^{th} 2009 54^{th} 1027 74^{th} 3019 94^{th} 1045 114^{th} 1050 134^{th} 3051 154^{th} 1 15^{th} 1007 35^{th} 1016 55^{th} 1028 75^{th} 1034 95^{th} 3029 115^{th} 2036 135^{th} 2042 155^{th} 3 16^{th} 1008 36^{th} 2013 56^{th} 2011 76^{th} 2023 96^{th} 2030 $116^$	8 th	1004 28 th 300	09 48 th	2016	68 th	2022	88 th	1038	108 th	3026	128 th	1057	148 th	3059		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 th	1005 29 th 10 ²	13 49 th	1023	69 th	3016	89 th	3025	109 th	1047	129 th	3049	149 th	3060		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 th	3003 30 th 200	06 50 th	1024	70^{th}	1032	90 th	2028	110 th	3041	130 th	2035	150 th	3061		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 th	2002 31 st 10 ²	14 51 st	1025	71 st	3018	91 st	2029	111 th	3038	131 st	2033	151 st	1059		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 th	1006 32 nd 10 ²	15 52 nd	2017	72 nd	3017	92 nd	3027	112 th	1049	132 nd	3050	152 nd	3062		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 th	3004 33 rd 20 ²	10 53 rd	2018	73 rd	1033	93 rd	3028	113 th	3039	133 rd	1055	153 rd	1053		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 th	2005 34 th 200	09 54 th	1027	74^{th}	3019	94 th	1045	114 th	1050	134 th	3051	154 th	1051		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 th	1007 35 th 10 ²	16 55 th	1028	75^{th}	1034	95 th	3029	115 th	2036	135 th	2042	155 th	3063		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 th	1008 36 th 20 ²	13 56 th	2011	76 th	2023	96 th	2030	116 th	3042	136 th	3052	156 th	3064		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 th	3005 37 th 20 ²	12 57 th	3010	77 th	2025	97 th	1039	117 th	2034	137 th	2038	157 th	3065		
19 th 1009 39 th 1018 59 th 2019 79 th 1035 99 th 1041 119 th 3043 139 th 2041 159 th 2	18 th	3006 38 th 10 ²	17 58 th	1029	78^{th}	3021	98 th	3030	118 th	3044	138 th	3053	158 th	1048		
200^{th} 2004 40^{th} 1019 60^{th} 3014 80^{th} 3020 100^{th} 2031 120^{th} 3045 140^{th} 3054 160^{th} 3	19 th	1009 39 th 10 ²	18 ^{59th}	2019	79^{th}	1035	99 th	1041	119 th	3043	139 th	2041	159 th	2044		
	20 th	2004 40 th 10 ⁴	19 60 th	3014	80 th	3020	100 th	2031	120 th	3045	140 th	3054	160 th	3066		

Table II: relation between magnet numbers used in Figs. 2-25 and official names

Appendix B

On September 24 we have 10 collared coils with additional mid-plane insulation: 3 from Firm1, 4 from Firm2 and 3 from Firm3. Results on allowed multipoles and main field are given in Table III. In the first three rows we give the expected effect of this change according to a 'rigid' electromagnetic model¹, to a model which includes coil and collar deformations², and to the results of the experiment on a short model. In the following rows we give the difference between measured multipoles of collared coils with cross-section 3 and with cross-section 2, separated according to different manufacturers. The different effect on b5 and b7 in Firm3 can be due to the trend quoted in Section 8, which is not taken into account since the comparison is done with all magnets with cross-section 2. The effect on average even skews is within one sigma, i.e. there is no measurable effect on skew multipoles from the additional mid-plane insulation as expected.

		c1	b3	b5	b7
	Rigid	-3.1	-3.2	-0.81	-0.20
Model	Defor	-3.1	-4.0	-0.60	-0.23
	Short	-7.9	-3.5	-0.52	-0.18
	Firm1 (3)	-5.1	-3.6	-0.72	-0.18
	Firm2 (4)	0.1	-2.5	-0.66	-0.15
	Firm3 (3)	-6.1	-3.0	-0.93	-0.09
Measure	System	-3.7	-3.0	-0.77	-0.14

Table IV: Effect of change of midplane insulation measured on short and long dipoles, and models.

¹ In this model we consider collars and copper wedges as infinitely rigid, and thus the increase in the midplane insulation is compensated by a uniform azimuthal compression of the coil.² In this model the collar and coil deformations (both azimuthal and radial) are evaluated through a finite element code.

Fig. 28: Best estimate for systematic odd normal multipoles (markers) versus beam dynamics limits (red line). An error of two sigma (95% confidence limit) is associated to the best estimates of systematics. Data reduced to nominal shims and separated according to different cross-sections (right).

Results of this set of collared coils with additional mid-plane insulation are given in Fig. 28. Normal sextupole is at around -4 units in the collared coil, corresponding to 1.2 units at high field. Normal decapole is at -0.4 units in the collared coil, corresponding to 0.8 units at injection (maximum target of 1.1 units) and at -0.5 at high field (minimum target of -0.8 units). Normal 14^{th} pole is at 0.96 units in the collared coil, corresponding to 0.25 at injection (maximum target of 0.1 units).