Collared Coil Database

(Contractor's version)

USERS MANUAL

I.Vanenkov MMS/LHC

Introduction.

During each mechanical test on the layers and poles the measured values are recorded using CERN - supplied hardware (Pole measuring machines), which produce sets of files containing the detailed measurement raw data. For monitoring the layers and the pole azimuthal length, the raw data need to be treated and normalized in standard format. CERN will supply the Contractor with software (Post-Processor) that will treat the raw data files and do an automatic upload of converted data into the Collared coil database. The *Collared coil database* is a part of traveller database and will be used as a first step in the process of storing the information in the CERN EDMS system. The database was designed using MS Access (MS Office 2000) and the data entry is executed via a userfriendly PC interface that will be provided to the Contractor by CERN. The architecture of the database was designed assuming that the measurement steps follow the sequence given in the Dipole Assembly Workflow Diagram (see figure 2). The operation, which generates each data item in the database, is identified in parentheses in the data entry form. For the traceability purpose, the names of original raw data files will be saved in the tables of database and their copies will be attached to the traveller. The summary results on some of the measurements steps need to be reported to CERN for an approval before the next assembly step is proceeding. Therefore the database as supplied to Contractor includes a facility to email the data to CERN for an approval and to mark the accepted data as approved. The database includes also the retrieve forms and the main parameters summary reports, which will be used as traveller pages.

Figure 1 (the Database Main switchboard)

In order to make easy navigation through varies number of forms the Database is subdivided into several layers. Each of these layers is managed by corresponding them switchboards. The Main switchboard shown in figure 1. In figure 2 shows the subswitchboards (Input new/update data), where the Dipole Assembly Workflow Diagram is used as a sub-switchboard to navigate easy in the Database.

Figure 2 (Input new/update data sub-switchboard)

Measurements data three steps internal check and external approval procedure.

First step: gathering new data, internal checks and transfer to CERN for approval (Contractor's Database).

1. Test operator (later User) opens the form "New_Pole_Form" (figure3) and by pressing the button "Import new data" creates a new record in the "Pole_assembly_table". In case of error, user can erase the imported data by pressing "Delete this record" button.

🕫 New_Pole_Forr	n									×
68	IC Ins	ert new/u	pdate	data	a on 1	poles	forn	n		
	 		F				Raw (lata file:	P030.xls	
IVI IVI	ашı 				In	ner layer	ID: HCN	IB A011	1-0200003	30 -
	poles P	ole ID: HCME	_A010-02	00003	30 OI	uter laver	ID HCN	- IB A012	2-0200003	30 T
		S100 I fumi	1 🔽		E40 D	ICP-1	T90 D	[CPal	\$100.1	P. Incom
Inner Outer	Inner Outer	Inner Outer			Inner	Outer	Inner	Outer	Inner	Outer
7.112 6.906	9.280 9.043	-0.067 -0.063		1	6.956	6.984	9.048	9.174	-0.089	-0.047
6.980 7.092	9.080 9.370	-0.083 -0.050	2	2	6.854	7.035	8.813	9.492	-0.114	-0.029
7.179 6.785	9.308 8.815	-0.065 -0.063	3	3	7.022	6.819	9.046	8.993	-0.075	-0.050
7.289 7.032	9.416 9.002	-0.037 -0.041	4	4	7.217	6.975	9.255	9.135	-0.042	-0.034
7.155 6.966	9.347 9.020	-0.059 -0.058	5	5	6.968	6.882	9.036	9.052	-0.064	-0.051
7.272 7.025	9.590 9.172	-0.053 -0.040	6	6	7.051	6.987	9.223	9.401	-0.082	-0.029
7.220 7.043	9.360 9.092	-0.086 -0.047	7	7	7.069	7.072	9.074	9.372	-0.080	-0.039
7.158 6.853	9.228 8.812	-0.070 -0.060	8	8	6.991	6.902	9.097	9.096	-0.074	-0.050
7.286 7.086	9.443 9.221	-0.096 -0.071	9	9	6.969	6.999	8.901	9.381	-0.115	-0.041
7.069 6.689	9.199 8.664	-0.060 -0.061	10	10	6.930	6.592	9.034	8.684	-0.059	-0.043
7.199 6.706	9.383 8.625	-0.054 -0.059	11	11	6.987	6.538	8.989	8.560	-0.060	-0.050
7.161 6.853	9.269 8.883	-0.115 -0.097	12	12	7.021	6.744	9.065	8.930	-0.125	-0.083
7.168 6.840	9.318 8.769	-0.091 -0.081	13	13	7.079	6.856	9.255	8.920	-0.076	-0.082
7.188 6.913	9.319 8.971	-0.042 -0.044	14	14	7.054	6.785	9.213	8.932	-0.038	-0.040
7.102 7.022	9.299 9.152	-0.070 -0.067	15	15	7.085	6.966	9.104	9.285	-0.105	-0.052
7.172 7.027	9.355 9.036	-0.068 -0.079	16	16	7.117	6.729	9.197	8.796	-0.077	-0.076
7.321 7.042	9.489 9.089	-0.038 -0.066	17	17	7.241	6.969	9.407	9.134	-0.054	-0.047
7.012 6.865	9.093 8.970	-0.100 -0.080	18	18	6.950	6.703	8.954	8.915	-0.103	-0.070
5.222 4.686	6.729 5.921	0.144 0.203	19	19	5.632	5.064	7.035	6.331	0.086	0.138
4.939 4.618	6.278 5.790	0.096 0.158	20	20	5.546	4.941	6.675	6.023	0.035	0.129
4	Average coil sizes:	-0.070 -0.063	1 🛛 💓			A	verage c	oil sizes:	-0.080	-0.051
Return to) the main switchb	oard	Import new	data]		D	elete this	s record	
Record: II 4	1 🕨 📕	▶ * of 1								

Figure 3

"Import new data on poles" macro imports the data from the C:\Collared Coil Database\Conractor\Pole_transfer.txt file (created by CERNPP, see manual for Post-Processor software) and creates a new record in the "Pole_assembly_table".

2. The new data need first to be checked and validated by Contractor's Responsible. The Responsible perform this check through the form "**Check the data on poles**" (figure 4). If the data is acceptable, he has to press the button "**Validate**", otherwise if the data is not correct or considered to be rejected - he has to press the "**Reject**" button. In both cases he will be prompt first to type into the form the date and his name.

🖽 Check the data on	poles form									×
		Check ne	w data	a on	nole	s for	m			
				• • • •	pore	.5 101	Raw	iata file:	P030.xls	
	(l • -				In	ner layer	ID: HCM	IB A011	-0200003	33
Dibo	eles P	ole ID: [HCMB]	_A010-02	00003	33 _O	uter laver	ID HCM	 IB_A012	-0200003	33
E40 L (CD-1	DOD T 100-1	S100 T. Incut	1		F40 D	TCP-1	T20 D	[CPal	\$100.1	lucul C
Inner Outer In	nner Outer	Inner Outer			Inner	Outer	Inner	Outer	Inner	Outer
7.112 6.906	9.280 9.043	-0.067 -0.063	1	1	6.956	6.984	9.048	9.174	-0.089	-0.047
6.980 7.092	9.080 9.370	-0.083 -0.050	2	2	6.854	7.035	8.813	9.492	-0.114	-0.029
7.179 6.785	9.308 8.815	-0.065 -0.063	3	3	7.022	6.819	9.046	8.993	-0.075	-0.050
7.289 7.032	9.416 9.002	-0.037 -0.041	4	4	7.217	6.975	9.255	9.135	-0.042	-0.034
7.155 6.966	9.347 9.020	-0.059 -0.058	5	5	6.968	6.882	9.036	9.052	-0.064	-0.051
7.272 7.025	9.590 9.172	-0.053 -0.040	6	6	7.051	6.987	9.223	9.401	-0.082	-0.029
7.220 7.043	9.360 9.092	-0.086 -0.047	7	7	7.069	7.072	9.074	9.372	-0.080	-0.039
7.158 6.853	9.228 8.812	-0.070 -0.060	8	8	6.991	6.902	9.097	9.096	-0.074	-0.050
7.286 7.086	9.443 9.221	-0.096 -0.071	9	9	6.969	6.999	8.901	9.381	-0.115	-0.041
7.069 6.689	9.199 8.664	-0.060 -0.061	10	10	6.930	6.592	9.034	8.684	-0.059	-0.043
7.199 6.706	9.383 8.625	-0.054 -0.059	11	11	6.987	6.538	8.989	8.560	-0.060	-0.050
7.161 6.853	9.269 8.883	-0.115 -0.097	12	12	7.021	6.744	9.065	8.930	-0.125	-0.083
7.168 6.840	9.318 8.769	-0.091 -0.081	13	14	7.079	6.856 C 70E	9.200	8.920	0.076	-0.082
7.100 0.313	9.299 9.152	-0.042 -0.044	15	15	7.034	6.765	9104	9.332	-0.036	-0.040
7.102 7.022	9 355 9 036	-0.068 -0.079	16	16	7.003	6.729	9 1 97	8 796	-0.103	-0.032
7.321 7.042	9.489 9.089	-0.038 -0.066	10	17	7.241	6,969	9.407	9134	-0.054	-0.047
7.012 6.865	9.093 8.970	-0.100 -0.080	18	18	6.950	6.703	8.954	8.915	-0.103	-0.070
5.222 4.686	6.729 5.921	0.144 0.203	19	19	5.632	5.064	7.035	6.331	0.086	0.138
4.939 4.618	6.278 5.790	0.096 0.158	20	20	5.546	4.941	6.675	6.023	0.035	0.129
						ال ــــــــــ ا		oil airea:		0.051
Ave	arage coil sizes:	-0.070 -0.063				^	verage c	on sizes.	-0.000	-0.051
				St	atus:					
Return to the	e main switchbo	ard Checked Da	by: <mark>Respons</mark> ate: <mark>24-04-0</mark> 2	ible		alidate		I	Reject	*
Record: 📕 🕢	1 🕨 🔰	▶ * of 1								

Figure 4

In case of "validate" action, the macro "Check the pole" does followings: first it runs the "Set_as_Waiting_ap_pole_Query", which updates the "status of the layer" field in the "Pole_assembly_table" to the "Waiting_for_approval" value; then it transfers current record to the "Waiting_ap_pole_table" (waiting for approval pole table), after that it runs the macro "Pole_data_transfer_to_CERN_macro", which E-mails the data from "Waiting_ap_pole_table" to CERN; and finally it runs the "Checked pole delete query" which deletes the record on this layer from the "Waiting_ap_pole_table".

In case of "reject" action, the macro "Reject the Inner Layer" does followings: first it runs the "Set_as_rejected_inner_layer" query, which updates the "status of the

layer" field in the "Inner_layers_table" to the "Rejected_layer" value; runs the "Transfer rejected inner layer query", which transfers current record to the "Rejected_inner_layers_t" table and runs "New_inner_layer_delete_query", which deletes the record on this layer from the "Inner layer table".

Second step: data approval at CERN and re-transfer to Contractor (CERN's Database).

1. At CERN, the Responsible receives the E-mail named as "New data on poles" (figure 5) with an Excel file "*Waiting_ap_pole_table.xls*" as an attachment. This file contains the data on new pole. The Responsible has first to save this file under the C:\Collared Coil Database\CERN\folder as it shown below (the procedure is written in the body of this e-mail).

Figure 5

2. The CERN Responsible uses the "Approval_data_on_poles" Form (figure 6) to do an approval or to reject the new data. In this form the button "Load data waiting for approval" is used to import new data from the Excel file into CERN database. If the data is acceptable, the Responsible has to press the button "approval", otherwise, if the data is not correct or this pole has to be rejected - he has to press the "Reject this pole" button. In both cases he will be prompt to type into the form the date and his name.

👪 Data_on_poles_ap	proval_Form					×
C REAL	Г	ata on no	les annr	oval form		
Main	L	ata on po	ics appi		Raw data file:	P033.xls
Name and Associated a	_			Inner laye	ID: HCMB A011	-02000033
Dipol	les Po	ole ID: [HCMB	A010-02000	033 Outer lave	ID HCMB A012	2-02000033
		(100 T T 1				
E40_L [GPa] E Inner Outer In	80_L [GPa] ner Outer	Inner Outer		E4U_R [GPa] Inner Outer	ESU_R [GPa]	SIUU_R [mm]
7.112 6.906 9	9.280 9.043	-0.067 -0.063	1 1	6.956 6.984	9.048 9.174	-0.089 -0.047
6.980 7.092 9	9.080 9.370	-0.083 -0.050	2 2	6.854 7.035	8.813 9.492	-0.114 -0.029
7.179 6.785 9	9.308 8.815	-0.065 -0.063	3 3	7.022 6.819	9.046 8.993	-0.075 -0.050
7.289 7.032 9	9.416 9.002	-0.037 -0.041	4 4	7.217 6.975	9.255 9.135	-0.042 -0.034
7.155 6.966 9	9.347 9.020	-0.059 -0.058	5 5	6.968 6.882	9.036 9.052	-0.064 -0.051
7.272 7.025 9	9.590 9.172	-0.053 -0.040	6 6	7.051 6.987	9.223 9.401	-0.082 -0.029
7.220 7.043 9	9.360 9.092	-0.086 -0.047	7 7	7.069 7.072	9.074 9.372	-0.080 -0.039
7.158 6.853 9	3.228 8.812	-0.070 -0.060	8	6.991 6.902	9.097 9.096	-0.074 -0.050
7.286 7.086 9	9.443 9.221	-0.096 -0.071	9 9	6.969 6.999	8.901 9.381	-0.115 -0.041
7.069 6.689 9	9.199 8.664	-0.060 -0.061	10 10	6.930 6.592	9.034 8.684	-0.059 -0.043
7.199 6.706 9	9.383 8.625	-0.054 -0.059	11 11	6.987 6.538	8.989 8.560	-0.060 -0.050
7.161 6.853 9	9.269 8.883	-0.115 -0.097	12 12	7.021 6.744	9.065 8.930	-0.125 -0.083
7.168 6.840 9	9.318 8.769	-0.091 -0.081	13 13	7.079 6.856	9.255 8.920	-0.076 -0.082
7.188 6.913 9	9.319 8.971	-0.042 -0.044	14 14	7.054 6.785	9.213 8.932	-0.038 -0.040
7.102 7.022 9	9.299 9.152	-0.070 -0.067	15 15	7.085 6.966	9.104 9.285	-0.105 -0.052
7.172 7.027 9	9.355 9.036	-0.068 -0.079	16 16	7.117 6.729	9.197 8.796	-0.077 -0.076
7.321 7.042 9	9.489 9.089	-0.038 -0.066	17 17	7.241 6.969	9.407 9.134	-0.054 -0.047
7.012 6.865 9	3.093 8.970	-0.100 -0.080	18 18	6.950 6.703	8.954 8.915	-0.103 -0.070
5.222 4.686 6	5.729 5.921	0.144 0.203	19 n 19	5.632 5.064	7.035 6.331	0.086 0.138
4.939 4.618 E	5.278 5.790	0.096 0.158	20 20	5.546 4.941	6.675 6.023	0.035 0.129
Aver	age coil sizes:	-0.070 -0.063			Average coil sizes:	-0.080 -0.051
T I . I	itin - fra		C 📕	hecked by: <mark>Resp</mark>	onsible	
Load data	waining for ap	proval:		Date: 24-A	pr-02	
Return to the	e Approv	red by: Responsible	e ,	a provide	Reje	ct this 🚽 📘
main switchbo	ard	Date: 25-Apr-02	· · · · · · · · · · · · · · · · · · ·	hhinnai	pole	
Record: II I	1 🕨 🔰	▶ * of 1				

Figure 6

The "Load new data" button executes the "Import data on pole assembly" macro, which imports the data from the "Waiting_ap_pole_table.xls" Excel file into the "Waiting_ap_pole_table".

In case of "Approval" action, the "Pole approval Macro" does followings: first it runs the "Set_as_approved_pole_Query", which updates the "status of the pole" field in the "Waiting_ap_pole_table" to the "Approved_pole" value; then it runs the "Transfer_pole_query", which transfers current record to the "Approved_data_on_pole" table, runs the "Transfer_approved_pole" query, which transfers current record to the "Approved_pole" table; then it exports the data on approved layer into an Excel file, named as "Approved_pole.xls" and E-mails this file back to Contractor marked as "Approved pole"; then it runs the "Delete the approved pole query", which deletes the record on this pole from the "Waiting_ap_pole_table" and finally it runs the "Delete_approved_pole" query, which deletes the record on this pole from the "Approved pole" table.

In case of "reject" action, the macro "Pole reject macro" does followings: first it runs the "Set_as_rejected_pole_Query", which updates the "status of the pole" field in the "Waiting_ap_pole_table" to the "Rejected_pole" value; then it runs the "Reject_pole_query", which transfers the record on this pole to the "Rejected_pole" table; exports the data on rejected layer into an Excel file, named as "Rejected_pole.xls" and E-mails this file back to Contractor marked as "Rejected pole", then it runs the "Transfer rejected pole query", which transfers the record on rejected pole to the "Rejected_poles" table; runs "Delete_rejected_pole_query", which deletes this record from the "Rejected_pole" table and, finally runs the "Delete the approved pole query", which deletes this record from the "Waiting_ap_pole_table".

Third step: Contractor's Database update with the approved (rejected) data

1. The Contractor's Responsible receives an E-mail with attachment, containing an Excel ("*Approved_data_on_poles.xls*" or "*Rejected data on poles.xls*") file with the approved or rejected data (figure 7). In order to update the database, Responsible has first to save this file under the C:\Collared Coil Database\Contractor\folder and then import the data into database thought the "**Data on poles retrieve**" or "**Rejected poles retrieve**" form (all instructions are written in the body of the mail).

🚔 Approve	d pole							_ 0	×
File Edit	t View	Tools Mess	age Help						E
<u>Q</u> q	<u>G</u> e	4 <u>0</u>	a	\times	4	<≯			
Reply	Reply All	Forward	Print	Delete	Previous	Next	Addresses		
 From: Date: To: Subject: Attach:	Iouri Vane Thursday, vanenkov(Approved	nkov 25 April, 200 @cern.ch pole ved_data_on	2 17:18 _poles.xls (2	7.4 KB)					
Please up Database approved	odate the c\Contrac d data" bu	DB: first s: tor\folder, itton in the	ave the att; then lunch "Data on j	ached file the MS 4 poles retri	under C:\C Access datz eve" Form.	ollared C base and	Coil 1 press "Cheo	ck for the new	×

2. The Contractor's Responsible updates the database through the "Data on the poles retrieve" form (figure 10) or "Rejected poles retrieve " form (figure 11). He could access these form through the corresponding switchboard: "Approved Data Retrieve Switchboard" (figure 8) or "Rejected data retrieve Switchboard" (figure 9). For example, in case of approved data, in order to update the database the Responsible has to press the button "Check for new approved data" in "Data on the poles retrieve" form and the data will be imported into the "Approved_poles_t" table as a new record. It should be noticed, that since the data was approved by CERN and transferred to the Contractor's database, it is no longer accessible for editing and can be retrieved thought retrieve type forms only (all fields in these forms are protected against editing).

Figure 8

			1 iguit				
🔀 Data_on_poles	s_retrieve_Form						×
		Data an n	alae na	triovo f	Comm		
	· ·	Data oli p	ules l'e	u ieve i		Raw data file:	P030.xls
M	ain			;	Inner laver	ID: HCMB A011	-02000030
Di 😳 Di	poles P	ole ID: HCMB	_A010-02	000030	Out on 10000	ID HCMP A012	02000030
					Outer laye		2-02000030
E40_L [GPa]	E80_L [GPa]	S100_L [mm]		E40_1	R [GPa]	E80_R [GPa]	S100_R [mm]
7.112 6.906	9.280 9.043	-0.067 -0.063		1 6 956	6 984		
6.980 7.092	9.080 9.370	-0.083 -0.050	2	2 6.854	7.035	8.813 9.492	-0.114 -0.029
7.179 6.785	9.308 8.815	-0.065 -0.063	3	3 7.022	6.819	9.046 8.993	-0.075 -0.050
7.289 7.032	9.416 9.002	-0.037 -0.041	4	4 7.217	6.975	9.255 9.135	-0.042 -0.034
7.155 6.966	9.347 9.020	-0.059 -0.058	5	5 6.968	6.882	9.036 9.052	-0.064 -0.051
7.272 7.025	9.590 9.172	-0.053 -0.040	6	6 7.051	6.987	9.223 9.401	-0.082 -0.029
7.220 7.043	9.360 9.092	-0.086 -0.047	7	7 7.069	7.072	9.074 9.372	-0.080 -0.039
7.158 6.853	9.228 8.812	-0.070 -0.060	8	8 6.991	6.902	9.097 9.096	-0.074 -0.050
7.286 7.086	9.443 9.221	-0.096 -0.071	9	9 6.969	6.999	8.901 9.381	-0.115 -0.041
7.069 6.689	9.199 8.664	-0.060 -0.061	10	10 6.930	6.592	9.034 8.684	-0.059 -0.043
7.199 6.706	9.383 8.625	-0.054 -0.059	11	11 6.987	6.538	8.989 8.560	-0.060 -0.050
7.161 6.853	9.269 8.883	-0.115 -0.097	12	12 7.021	6.744	9.065 8.930	-0.125 -0.083
7.168 6.840	9.318 8.769	-0.091 -0.081	13	13 7.079	6.856	9.255 8.920	-0.076 -0.082
7.188 6.913	9.319 8.971	-0.042 -0.044	14	14 7.054	6.785	9.213 8.932	-0.038 -0.040
7.102 7.022	9.299 9.152	-0.070 -0.067	15	15 7.085	6.966	9.104 9.285	-0.105 -0.052
7.172 7.027	9.355 9.036	-0.068 -0.079	16	16 7.117	6.729	9.197 8.796	-0.077 -0.076
7.321 7.042	9.489 9.089	-0.038 -0.066	17	17 7.241	6.969	9.407 9.134	-0.054 -0.047
7.012 6.865	9.093 8.970	-0.100 -0.080	18	18 6.950	6.703	8.954 8.915	-0.103 -0.070
5.222 4.686	6.729 5.921	0.144 0.203	19	19 5.632	5.064	7.035 6.331	0.086 0.138
4.939 4.618	6.278 5.790	0.096 0.158	20	20 5,546	4.941	6.675 6.023	0.035 0.129
	Average coil sizes:	-0.070 -0.063	i 🛛 💓		A	verage coil sizes:	-0.080 -0.051
Check for	r the new approv	red data 🛛 🤜		Status: 🛛	Approved po	ole Export d	ata 📔
4-		Checked	hw ansaldo		Appro	ved by Respons	ible
Return to	the main switchbo	Dard Da	ate: 25 Ap	r-02	119910	Date: 25-Ap	r-02
Record: II I	1 🕨 🕨	▶ * of 3					

Figure 9

Figure 10

"Import approved pole" macro reads the approved data from the C:\Collared Coil Database\Conractor\Approved_pole.xls file and create a new record in the "Approved pole" table (flash-table), then it runs the "Transfer_approved_pole_query " which transfer this record to the "Approved_poles_t" table (principal table) and then it runs the "Delete_transfered_approved_pole_query" query, which deletes the corresponding record in the "Approved pole" flash-table.

It should be noticed, that from this form, the user, by pressing the button "**Export data**" can export all approved data on poles into an Excel file "*Data_on_poles.xls*", which can be used as a source for statistical analysis (it can be found in *C:\Collared Coil Database\Contractor\folder*).

🕫 Data_on_poles	_retrieve_Form						×
CAN LH	rc Dat	ta on poles	s retrie	eve forn	n (rei	ected)	
	ain				- (J	Raw data file:	P030.xls
	ашц Т Т		4.010.00		inner layer	ID: HCMB_A01:	1-02000031
	poies P	ole ID: [HCMB]	_AU10-020	100031	Duter laye:	ID HCMB A01	2-02000031
E40 L ICD-1	T200 T (CD-1	\$100 T. fmml	1	E40 1			S100 D fumil
Inner Outer	Inner Outer	Inner Outer		Inner	Outer	Inner Outer	Inner Outer
7.112 6.906	9.280 9.043	-0.067 -0.063	1	1 6.956	6.984	9.048 9.174	-0.089 -0.047
6.980 7.092	9.080 9.370	-0.083 -0.050	2	2 6.854	7.035	8.813 9.492	-0.114 -0.029
7.179 6.785	9.308 8.815	-0.065 -0.063	3	3 7.022	6.819	9.046 8.993	-0.075 -0.050
7.289 7.032	9.416 9.002	-0.037 -0.041	4	4 7.217	6.975	9.255 9.135	-0.042 -0.034
7.155 6.966	9.347 9.020	-0.059 -0.058	5	5 6.968	6.882	9.036 9.052	-0.064 -0.051
7.272 7.025	9.590 9.172	-0.053 -0.040	6	6 7.051	6.987	9.223 9.401	-0.082 -0.029
7.220 7.043	9.360 9.092	-0.086 -0.047	7	7 7.069	7.072	9.074 9.372	-0.080 -0.039
7.158 6.853	9.228 8.812	-0.070 -0.060	8	8 6.991	6.902	9.097 9.096	-0.074 -0.050
7.286 7.086	9.443 9.221	-0.096 -0.071	9	9 6.969	6.999	8.901 9.381	-0.115 -0.041
7.069 6.689	9.199 8.664	-0.060 -0.061	10	10 6.930	6.592	9.034 8.684	-0.059 -0.043
7.199 6.706	9.383 8.625	-0.054 -0.059	11	11 6.987	6.538	8.989 8.560	-0.060 -0.050
7.161 6.853	9.269 8.883	-0.115 -0.097	12	12 7.021	6.744	9.065 8.930	-0.125 -0.083
7.168 6.840	9.318 8.769	-0.091 -0.081	13	13 7.079	6.856	9.255 8.920	-0.076 -0.082
7.188 6.913	9.319 8.971	-0.042 -0.044	14	14 7.054	6.785	9.213 8.932	-0.038 -0.040
7.102 7.022	9.299 9.152	-0.070 -0.067	15	15 7.085	6.966	9.104 9.285	-0.105 -0.052
7.172 7.027	9.355 9.036	-0.068 -0.079	16	16 7.117	6.729	9.197 8.796	-0.077 -0.076
7.321 7.042	9.489 9.089	-0.038 -0.066	17	17 7.241	6.969	9.407 9.134	-0.054 -0.047
7.012 6.865	9.093 8.970	-0.100 -0.080	18	18 6.950	6.703	8.954 8.915	-0.103 -0.070
5.222 4.686	6.729 5.921	0.144 0.203	19	19 5.632	5.064	7.035 6.331	0.086 0.138
4.939 4.618	6.278 5.790	0.096 0.158	20	20 5.546	4.941	6.675 6.023	0.035 0.129
4	werege coil sizes:	.0.070	i N 🛛		الــــــــــــــــــــــــــــــــــــ	verage coil sizes:	-0.080 -0.051
	TVerage con sizes.	0.010 0.000		Status:	Rejected p	ole	
		Checked to	TT: annald-	٨٠٠	rorrod her	Responsible	Import
Return to	the main switchbo	bard Checked C	te: 25.Apr.0	App 2	noveu by Date:	25.Apr.02	rejected 🦁
		Dai	ici zowpro	<u> </u>	L'aic.	23%pr02	data
Record: 14 4	1 🕨 🔰	▶ * of 1					

Figure 11

"Import rejected pole" macro reads the approved data from the C:\Collared Coil Database\Conractor\Rejected_pole.xls file and create a new record in the "Rejected pole" table (flash-table), then it runs the "Transfer_rejected_pole_query " which transfer this record to the "Rejected_poles_t" table (principal table) and then it runs the "Delete_transfered_rejected_pole" query, which deletes the corresponding record in the "Rejected_pole."

The Contactor's database includes the main parameters summary reports, to be used as Traveller's pages. These reports are accessible through the "Print reports switchboard" (figure 12).

Figure 12

ALIN CONTRACTOR: ANSALDO CONTRACTOR INUMBER: F302 UB CONTRACTOR: COLPACE SUB CONTRACTOR NUMBER: 500 SUB CONTRACTOR NUMBER: 500 CONTRACTOR: NAME COLPACE COLPACE SUB CONTRACTOR NUMBER: 500 CONTRONENT NAME: Text+57: COLPACE COLPACE SUB CONTRACTOR NUMBER: P300 ERN INSECTION and TESTPLAN NUMBER: Text+57: PERATOR: NON-CONTORMITY NUMBER: P AME OF TEST OFERATOR: PERATOR: PSPN0 PASPN0 NON-CONTORMITY NUMBER: P NON-CONTORMITY NUMBER: P ATE OF TEST FERSTORE PERATOR: PASPN0 P P P NON-CONTORMITY: P <th></th> <th>AMS TR2</th> <th>CEAI</th> <th>вшпл</th> <th>7</th> <th></th> <th>IN</th> <th>FOR</th> <th>MA</th> <th>ΓION</th> <th></th> <th></th> <th></th> <th></th>		AMS TR2	CEAI	вшпл	7		IN	FOR	MA	ΓION					
UB CONTRACTOR (ff applicable): SUB CONTRACTOR NUMBER: 00M PONENT NAME: COL P OLE Text467: COL P OLE HCM and TEST PLAN NUMBER: P030 x/s ERN INSPECTION and TEST PLAN NUMBER: /TP-8 Secial Number/Baich Number: P030 x/s ION CONFORMITY: 0 NON-CONFORMITY NUMBER 0 AME OF TEST OFERATOR: 7ms/do Fast/do NON-CONFORMITY NUMBER 0 AME OF TEST OFERATOR: 7ms/do Fast/do NON-CONFORMITY NUMBER 0 AME OF TEST OFERATOR: 7ms/do Fast/non-Conformit/do NON-CONFORMITY NUMBER 0 AME OF TEST OFERATOR: 7ms/do Fast/non-Conformit/do Non-Conformit/do Non-Conformit/do	MAIN CO	NTRACTOR:				ANSAL	D0		CO	NTRACT	OR NUM	BER:	F30.	2	
COL POLE COL POLE ERN FART NUMBER: Text467: HC H8_AD10-D2010000 Serial Number:/Back Number: P030.265 ERN FART NUMBER: ITEX TUMBER: P030.265 Colspan="2">Stort FST PD FERATOR: P030.265 AME 0F TEST 0FERATOR: P050/06 Stort first Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Life(FPa] E40_R [GPa] E40_R [GPa] Stort first P000.00 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Life(FPa] E800_R [GPa] Stort first	SUB CON	TRACTOR (if applical	de):					su	B CONTR	ACTOR	NUMBE	R:		
ARN FACT AND A BER - - Settal NUMBER: PO0033 ERN INSPECTION and TESTPLAN NUMBER: 177-8 NON-CONFORMITY: 0 NON-CONFORMITY:NUMBER: PO0034 AME OF TEST OPERATOR ansalido ansalido Its ST NUMBER: NON-CONFORMITY NUMBER: 0 AME OF TEST OPERATOR ansalido Its St Ponsibilis E40_E [GPa] E80_E [GPa] S100_E [mm] axe Outar Inaac Outar Inaac Outar Inaac Outar 112 6.06 9.280 9.043 -0.067 -0.053 1 6.956 6.984 9.048 9.174 -0.029 -0.041 1285 7.032 9.012 -0.055 -0.053 3 3 7.022 6.878 9.016 8.002 -0.054 1272 7.025 9.590 9.012 -0.053 -0.041 4 7.217 6.978 9.232 9.010 -0.052 -0.054 5 6.986 9.333 -0.014 0.052 -0.052 -0.054 5 6.986 9.023 9.015 -0.0164 0.051	COMPON	ENT NAME:	Text	467:		CONLIA Heimb	2015 2010-0						D/19/	l vie	
ALL INFORMATIVE D <thd< th=""> D <thd< th=""> <</thd<></thd<>	CERN FAL	KI NUMBER VECTION -	1 7766 7701	ANI MILINAT	0170	1779-8	-		50	цац куштире Ката капалата	17.1631CN N 1770-	numuoler:	FEOL		
AME OF TEST OPERATOR: ansido AME OF TEST: 25 Apr02 AUT OF TEST: 0057 0.053 1 AUT OF TEST: 0050 0.053 1	NON CON	FORMITY [.]	1163111		DEN.	n 2			M	NI NOMI	NEN. DRMTTV	NIMBE	R 0		
Responsible Responsible Responsible ATE OF TEST: Responsible ATE OF TEST: Responsible ATE OF TEST: Siloo_L [runn] Intex Outer Intex Outer 112 6306 Siloo_L [runn] Intex Outer Intex Outer 112 6306 Siloo_L [runn] Intex Outer Intex Outer 112 6306 Siloo_R [GPa] Siloo_R [GPa] Siloo_R [mm, Intex Intex Outer 1012 Outer 1012 Outer Intex Outer Intex Outer Intex Outer Intex Outer Intex <td colspan<="" td=""><td>NAMEOF</td><td>TEST OPER</td><td>TOR</td><td></td><td></td><td>- ansald</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>NAMEOF</td> <td>TEST OPER</td> <td>TOR</td> <td></td> <td></td> <td>- ansald</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NAMEOF	TEST OPER	TOR			- ansald	0							
ATE OF TEST: 25 Apr02 ATE OF TEST: 240 Apr02 Attract Order Data Order Balo B, R [GPa] Balo B, R [GPa] Balo B, R [GPa] Apr0a< Order ATE OF TEST: Colspan="6">Colspan="6">Order Data Apr02 Order Order Data Apr02 Order Data Attract Order Data Apr02 Order Balo A R [GPa] Balo A R [GPa] Data Apr02 ODD3 Balo Odder Odder Odder <tr< td=""><td>NAME OF</td><td>RESPONSIB</td><td>LE</td><td></td><td></td><td>Respo</td><td>กระปร</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	NAME OF	RESPONSIB	LE			Respo	กระปร								
40 L [GPa] E60 L [GPa] S100 L [mm] max Outar -0.067 -0.053 1 112 6.306 9.280 9.043 -0.067 -0.053 1 1.98 6.705 9.308 8.815 -0.067 -0.053 1 1.98 6.785 9.308 8.815 -0.067 -0.063 3 7.022 6.854 7.035 8.813 9.020 -0.014 4 7.217 6.975 9.255 9.135 -0.017 -0.024 4 7.217 6.975 9.255 9.135 -0.024 -0.034 4 7.217 6.975 9.225 9.135 -0.024 -0.034 4 7.217 6.975 9.225 9.016 -0.024 -0.034 4 7.217 6.975 9.225 9.016 -0.024 -0.024 -0.024 4 7.217 6.975 9.225 9.014 -0.024 -0.024 -0.024 -0.024 5 6.986 6.987 9.016 9.017 -	DATE OF	TEST				25-Apr	-02								
44 L [GPa] E80 L [GPa] S100 L [mm] Image Outer Image Image															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E40_L [G]	Pa] E80_)	L [GPa]	\$100_L	[mm]			Ĩ	E40_	R [GPa]	E80_R	[GPa]	S100_F	t (mm)	
112 6306 9200 9113 -0.067 -0.063 1 1 6396 6384 9148 9,174 -0.083 -0.043 1380 7.092 9030 9,370 -0.063 -0.050 2 2 6854 71035 8813 9.046 8.994 -0.014 -0.023 1396 7.052 9.416 9.002 -0.057 -0.041 4 4 7.217 6975 9.255 9.135 -0.042 -0.034 1356 6.966 9.347 9.020 -0.053 -0.046 6 6 7.051 6.987 9.223 9.401 -0.022 -0.024 -0.042 -0.041 4 7 7.059 9.023 9.014 9.022 -0.024 -0.042 -0.041 7 7 7.069 9.223 9.014 -0.024 -0.042 -0.041 7 7 7.069 9.014 9.372 -0.024 -0.024 -0.041 7 7 7.069 9.014 9.372 -0.034 -0.035 -0.035 -0.047 -0.041 -0.041 -0.041 <th>hmer Ot</th> <th>nter hnter</th> <th>Önder</th> <th>Inner</th> <th>Outer</th> <th> </th> <th>A</th> <th></th> <th>hner</th> <th>Outer</th> <th>hner</th> <th>Outer</th> <th>Inner</th> <th>Outer</th>	hmer Ot	nter hnter	Önder	Inner	Outer		A		hner	Outer	hner	Outer	Inner	Outer	
Sadi Line Line <thline< th=""> Line Line <thl< td=""><td>1.112 0 6090 7</td><td>-900 9200 -002 0037</td><td>0.200</td><td>-0.001</td><td>-0.063</td><td></td><td></td><td>1</td><td>625</td><td>7.036</td><td>9 Д48 9 Д48</td><td>9.104</td><td>-01189</td><td>-0.040</td></thl<></thline<>	1.112 0 6090 7	-900 9200 -002 0037	0.200	-0.001	-0.063			1	625	7.036	9 Д48 9 Д48	9.104	-01189	-0.040	
1.110 0.1101 9.416 9.002 -0.007 -0.014 4 7 7.11 6.915 9.255 9.135 -0.024 -0.024 1.155 6.966 9.347 9.020 -0.059 -0.058 5 5 6.968 6.852 9.035 -0.042 -0.053 1.222 7.025 9.500 9.112 -0.053 -0.040 6 6 7.051 6.987 9.223 9.401 -0.082 -0.022 1.226 7.043 9.380 9.052 -0.047 7 7 7.069 7.072 9.074 9.074 -0.053 1.58 6.583 9.228 8.812 -0.076 -0.060 8 6.991 6.902 9.097 9.066 -0.074 -0.053 1.58 6.583 9.229 8.833 -0.056 -0.051 10 10 6.930 6.538 8.969 8.560 -0.060 -0.051 1.61 6.583 9.269 8.833 -0.015 10.05 11 6.935 8.530 -0.062 -0.052 -0.053	7 179 6	785 930	8815	-0.065	-0.053	4		4	7.022	6819	9.046	8 993	-0.075	-0.023	
185 6.366 9.347 9.020 -0.059 -0.058 5 6.968 6.872 9.036 9.052 -0.064 -0.051 272 7.025 9.590 9.172 -0.053 -0.040 6 6 7.051 6.987 9.223 9.01 -0.052 -0.022 2.20 7.043 9.360 9.052 -0.056 -0.047 7 7.069 7.072 9.074 9.372 -0.030 -0.032 1.58 6.583 9.228 8.812 -0.070 -0.060 8 8 6.991 6.993 8.901 9.035 -0.074 -0.033 2.68 7.056 9.443 9.221 -0.066 -0.071 9 9 6.969 6.999 8.901 9.381 -0.115 -0.044 1.99 6.706 9.333 8.652 -0.054 -0.059 11 11 6.937 6.533 8.969 8.960 -0.060 -0.054 1.61 6.840 9.318 8.769 -0.054 -0.051 12 12 7.021 6.744 <	7.279 7	LT32 9.416	9.002	-0.037	-0.041	4		4	7.217	6975	9,255	9,135	-0042	-0.034	
272 7 D25 9550 9.112 -0.053 -0.040 6 7 7 7.059 9.223 9.401 -0.052 -0.055 220 7 D43 9.360 9.052 -0.066 -0.047 7 7 7.069 7.072 9.074 9.372 -0.030 -0.035 188 6.853 9.228 8.812 -0.070 -0.066 8 8 6.991 6.902 9.074 9.372 -0.030 -0.035 2268 7.056 9.443 9.221 -0.066 -0.061 10 6.969 6.902 9.079 9.381 -0.115 -0.041 199 6.706 9.333 8.655 -0.054 -0.059 11 10 6.950 6.533 8.969 8.901 -0.054 -0.054 161 6.853 9.269 8.853 -0.115 -0.061 10 10 6.973 8.960 -0.054 -0.054 162 6.313 9.138 8.791 -0.061 10.01 11 6.965 9.104 9.255 8.200 -0.0	7.155 6	966 9,347	9.020	-0.059	-0.058	5		5	6968	6.882	91036	9.052	-0.064	-0.051	
1220 7 116 9370 9.082 -0.086 -0.047 7 1.68 6.991 6.902 9.07 9.080 -0.030 -0.030 138 6.853 9.228 8.812 -0.070 -0.060 8 8 6.991 6.902 9.097 9.06 -0.074 -0.050 1288 6.583 9.193 8.664 -0.060 -0.071 9 9 6.968 6.999 8.01 9.381 -0.115 -0.041 1099 6.5706 9.333 8.652 -0.054 -0.059 11 10 6.937 6.538 8.969 8.560 -0.060 -0.043 1161 6.583 9.318 8.769 -0.0197 12 12 7.021 6.714 9.055 8.300 -0.025 -0.033 1188 6.913 9.319 8.971 -0.042 -0.044 14 14 7.056 9.104 9.255 -0.050 -0.053 -0.053 15 7.086<	7.272 7	n25 9.590	9.172	-0.053	-0.040	16		6	7.051	6987	9.223	9.401	-0.082	-0.023	
158 6.853 9.228 8.812 -0.070 -0.060 8 8 6.991 6.902 9.097 9.096 -0.074 -0.060 2.286 7.086 9.443 9.221 -0.086 -0.071 9 6.969 6.999 8.01 9.381 -0.115 -0.044 0.09 6.589 9.199 8.664 -0.064 -0.051 10 6.930 6.592 9.034 8.864 -0.069 -0.043 1.99 6.706 9.333 8.655 -0.054 -0.057 12 11 6.937 6.538 8.969 8.600 -0.063 -0.063 1.61 6.553 9.268 8.833 -0.014 -0.057 12 12 7.021 6.744 9.055 8.920 -0.125 -0.033 1.68 6.840 9.318 8.769 -0.064 -0.061 13 13 7.079 6.856 9.255 8.920 -0.125 -0.033 1.68 6.913 9.319 8.911 -0.042 -0.044 14 14 7.056 6.925	7.220 7	д43 9,360	9.092	-0.036	-0.047	7		7	7.069	7 072	9174	9.372	-0.080	-0.039	
1286 7.086 9.443 9.221 -0.086 -0.071 9 9 6.969 6.999 8.901 9.381 -0.115 -0.044 0.09 6.689 9.199 8.664 -0.060 -0.051 10 6.930 6.592 9.034 8.884 -0.099 -0.043 199 6.706 9.333 8.625 -0.054 -0.059 11 11 6.930 6.552 9.034 8.884 -0.069 -0.043 .161 6.583 9.238 8.633 -0.014 -0.0197 12 12 7.021 6.714 9.055 8.920 -0.125 -0.033 .188 6.913 9.319 8.971 -0.042 -0.044 14 14 7.054 6.785 9.213 8.932 -0.046 -0.043 .102 7.022 9.299 9.152 -0.070 -0.056 15 15 7.085 6.966 9.104 9.255 -0.064 -0.046 -0.077	7.158 6	853 9.22	8.812	-0.070	-0.050	18		8	6991	6.902	9 1197	9 II 96	-0.074	-0.050	
1089 6.889 9.199 8.664 -0.080 -0.051 10 6.930 6.532 9.034 8.684 -0.089 -0.043 1.99 6.705 9.333 8.625 -0.054 -0.059 11 6.930 6.532 9.034 8.684 -0.069 -0.043 1.61 6.583 9.269 8.833 -0.115 -0.029 12 12 7.021 6.7144 9.055 8.920 -0.125 -0.033 1.68 6.840 9.318 8.769 -0.041 13 13 7.079 6.685 9.255 8.920 -0.126 -0.033 1.68 6.840 9.318 8.771 -0.042 -0.044 14 14 7.054 6.785 9.213 8.930 -0.033 -0.033 1.02 7.022 9.299 9.152 -0.070 -0.057 15 15 7.086 6.966 9.104 9.255 -0.105 -0.053 1.72 7.027 9.335	7.286 7	DB6 9.443	9.221	-0.096	-0_171	9		9	6969	6.999	8.901	9,381	-0.1 15	-0.041	
119 6.706 9.383 8.625 -0.054 -0.059 11 6.987 6.538 8.899 8.660 -0.060 -0.061 161 6.853 9.269 8.883 -0.115 -0.027 12 12 7.021 6.744 9.055 8.390 -0.102 -0.081 13 168 6.840 9.318 8.769 -0.041 -0.041 13 13 7.079 6.856 9.255 8.390 -0.125 -0.063 1702 7.022 9.299 9.152 -0.007 -0.057 15 15 7.054 6.783 9.213 8.392 -0.076 -0.053 172 7.027 9.355 9.036 -0.068 -0.079 16 16 7.117 6.729 9.197 8.796 -0.077 -0.076 321 7.042 9.499 9.039 -0.056 17 17 7.241 6.969 9.407 9.134 -0.056 -0.070 -0.076 -0.070	7.069 6	.689 9.199	8.664	-0.060	-0.061	10		10	69 3	6.592	9134	8.684	-0.059	-0.043	
1:61 6.853 9.269 8.833 -0.115 -0.027 12 7.021 6.744 9.055 8.930 -0.125 -0.033 1:68 6.840 9.316 8.769 -0.021 -0.021 13 13 7.079 6.856 9.255 8.920 -0.016 -0.033 1:88 6.913 9.316 8.769 -0.024 14 14 7.054 6.785 9.255 8.920 -0.036 -0.046 1:02 7.022 9.299 9.152 -0.070 -0.044 14 14 7.054 6.785 9.213 8.932 -0.036 -0.046 1:02 7.027 9.355 9.005 -0.066 -0.079 16 16 7.117 6.729 9.197 8.796 -0.077 -0.076 3:21 7.042 9.499 9.099 -0.038 -0.066 17 17 7.241 6.969 9.407 9.134 -0.047 3:22 4.686 6.728 5.921 0.144 0.203 19 5.632 5.064 7.038 6.331	7.199 6	.706 9.383	8.625	-0.054	-0.059	11		11	698	6.538	8.989	8 <i>.9</i> 60	-0.060	-0.050	
100 0.544 9.516 0.109 -0.001 1.5 1.5 1.13 0.117 6.578 9.255 8.220 -0.007 -0.002 -0.004 14 14 7.054 6.788 9.255 8.220 -0.007 -0.002 -0.004 14 14 7.054 6.785 9.235 8.202 -0.007 -0.002 1.02 7.022 9.299 9.152 -0.007 -0.007 15 15 7.086 6.966 9.104 9.235 -0.015 -0.016 -0.027 .172 7.027 9.355 9.056 -0.068 -0.079 16 16 7.117 6.729 9.197 8.796 -0.017 -0.076 .321 7.042 9.489 9.099 -0.036 -0.006 17 17 7.241 6.969 9.407 9.134 -0.054 -0.047 .012 6.365 9.033 8.970 -0.102 0.0203 19 19 5.632 5.034 8.916	7.161 6	853 9269	8.883	-0.115	-0.097	12		12	7 021	6.7 44	9.065	8,930	-0.125	-0.083	
	r.168 6 7499 4	017 0340	8.169	-0.091	-0.081	13		13	7 1179	6,856	9255	8 920	-0076	-0.082	
	7 102 7	100 9,015 100 0000	0.9(1	-0.042 -0.070	-0.044	15		15	7 0 20	0.100 6965	9213	0.302	-01136	-0.040	
101 101 <td>7.172 7</td> <td>D27 9.356</td> <td>9,036</td> <td>-0.068</td> <td>-0.079</td> <td>16</td> <td></td> <td>16</td> <td>7.117</td> <td>67.29</td> <td>9,197</td> <td>8,796</td> <td>-0.0077</td> <td>-0.076</td>	7.172 7	D27 9.356	9,036	-0.068	-0.079	16		16	7.117	67.29	9,197	8,796	-0.0077	-0.076	
.012 6.865 9.033 8.970 -0.100 -0.080 18 18 6.950 6.703 8.964 8.915 -0.103 -0.070 .222 4.686 6.729 5.921 0.144 0.203 19 19 5.632 5.064 7.035 6.331 0.086 0.138 .339 4.618 6.278 5.790 0.096 0.158 20 20 5546 4.941 6.675 6.023 0.035 0.122 Average coll sizes: -0.070 -0.063 Average coll sizes: -0.080 -0.05	7.321 7	D42 9.489	9.0789	-0.038	-0.066	10		17	7.241	6969	9.407	9.134	-0.054	-0.047	
5222 4.586 6.729 5.921 0.144 0.203 19 19 5.532 5.064 7.035 6.331 0.086 0.138 .939 4.518 6.278 5.790 0.096 0.158 20 20 5545 4.941 6.575 6.023 0.035 0.122 Average coll sizes: -0.070 -0.063 Average coll sizes: -0.080 -0.05	7.012 6	.865 90.90	8.970	-0.100	-0.080	1 18		18	6950	6.703	8954	8.915	-0.103	-0.070	
2.039 4.518 5.278 5.790 0.096 0.158 20 1 20 55.45 4.941 6.515 6.023 0.095 0.125 Average coll sizes: -0.070 -0.053 Average coll sizes: -0.080 -0.05	5.222	.686 6.72	5.921	0.144	0.203	3 19		19	5.632	5064	7.035	6.331	0.086	0.138	
Average coil sizes: -0.070 -0.053	4.939 4	.618 6.278	5.790	0.096	0.158	3 20		20	5.548	4941	6.675	6023	0.035	0.12	
		Average	oil sizes	0700-	-0.063	3	Ø			ł	werage o	oil sizes:	-0.080	-0.0:	

Figure 13. Coil size/E-modulus measurements data Report

The reports can be made on approved data only. When user pressed the button "Print report", additionally to the hard copy, system creates an Excel file in a predefined format, containing summary data. This file is a subject to be attached to the electronic Traveller.

I step Contractor's Database

Gathering new data, and check

value.Run Transfer rejected inner layer query,

which copied data to the

II step CERN Database

Gathering new data and approval

Macro Reject_inner_layer

- Run Set_as_rejected_inner_layer_Query, which updates the layer's status in the Inner_layers_table to the "rejected layer" value.
- 2. *Run* Transfer rejected inner layer query, *which copied data to the*

III step Contractor's Database

a) Approved data retrieve

b) Rejected data retrieve

