LSA magnet polarities

Mike Lamont
Marek Strzelczyk

Conventions

- Reference beam is beam 1 - observer looks in direction of beam 1
- Field and gradients positive if current enters A terminal
- Left aperture from connection end is aperture 1 (V1)
- For single aperture magnets covering both beams:
\square beam 1 is used to describe the polarity.

Orbit Correctors

- A positive horizontal kick on beam 1 deflects beam outwards.
\square This implies a negative B field.
- A positive vertical kick on beam 1 deflects beam upwards.
\square This implies negative skew dipole - field point outwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the B terminal for B1.

Orbit Correctors - B2

- A positive horizontal kick on beam 2 deflects beam outwards. This implies a positive B field.
- A positive vertical kick on beam 2 deflects beam upwards. This implies positive skew dipole - field point inwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the A terminal for B2

For correctors acting on both beams, B 1 is the reference but we have to very careful in the software: a positive kick is negative for B 2 .

Correctors

Beam	Kick [LSA]	Deflection	Field
B1	$+\theta \mathrm{H}$	OUT	V NEG
B1	$+\theta \mathrm{V}$	UP	NEG (OUT)*
B2	$+\theta \mathrm{H}$	OUT	V POS
B2	$+\theta \mathrm{V}$	UP	POS (IN)
B1/B2	$+\theta \mathrm{H}$	B1 OUT B2 IN	V NEG
B1/B2	$+\theta \mathrm{V}$	B1 UP B2 DOWN	NEG (OUT)*

Quadrupoles

- A positive quadrupole field gradient or polarity is one where the vertical B-field increases as one moves in a positive x direction (away from the centre of the machine). This is focusing for beam 1
- MAD: a positive value corresponds to horizontal focusing of a positively charged particle.
- Beam 1
$\square+K$ horizontally focusing positive A
- Beam 2
$\square+K$ horizontally focusing positive B

MAD

■ kqd := -0.008600955656;
■ kqf := 0.008990100753 ;

■ kqf.a12 := kqf ;
■ kqd.a12 := kqd ;

■ RQF.A12B1: MQ, K1 := KQF.A12;
■ RQF.A12B2 : MQ, K1 := -KQF.A12;

- MQ.23R5.B1:RQF.A56B1

■ MQ.23R5.B2:RQD.A56B2

Quads etc.

- Except for bipolar supplies we give power converters positive references
- Rely on cabling to get things right

- In LSA parlance:
\square magnet/magnet string is logical hardware
- i.e stuff we can not directly address
\square power converters are actual hardware
- i.e. stuff we can actually talk to, load functions etc.
- not always a one to one mapping
\square We map transfer functions (or calibration curves as we call them (B versus I)) to logical_hardware.
- i.e. we calculate currents for magnets and worry about the power converters later
- Extended this to cover both apertures

LSA - parameter space

LSA - parameter space

LSA

- In LSA we keep strengths (K) and current (I) for magnets or magnet strings (logical hardware).
\square NB We keep the strength sign: + is F, - is D for both beams
- The magnets/magnet strings are mapped on to power converters for which we calculate currents (IREF).
- To take care of the cases where negative strengths have to give positive reference we have a "calibration sign" on the database which is set to give the correct current when we go through the transfer function.

■ For non-bipolar quads we only keep the positive signed TF

Quad strengths

RQF.A12/K

RQD.A12/K

Logical Hardware

	\#	LOGICAL_HARDWARE_NAME	DESCRIPTION	NB_OF_ELEMENTS	ACTIVE_CAL_NAME	CAL_SIGN
,	1	RQD.A56		47	MQ	-1
	2	RQD.A56B1	single aperture of magnet string	23	MQ	-1
	3	RQD.A56B2	single aperture of magnet string	24	MO	-1
	4	RQF.A56		47	MQ	1
	5	RQF.A56B1	single aperture of magnet string	24	MQ	1
	6	RQF.A56B2	single aperture of magnet string	23	MQ	1
	7	RQS.A56B2		4	MQS	1
	8	RQTD.A56B1		8	MQT	1
	9	RQTD.A56B2		8	MQT	1
	10	RQTF.A56B1		8	MQT	1
	11	RQTF.A56B2		8	MQT	1

b3 - B1 and B2

RB.A56B1/B3

RB.A56B2/B3

MCS strengths B1/B2

And then hope the cabling is right

Bipolar supplies

- Pretty natural
- Standard signs for strengths
\square e.g. positive sextupole compensates negative b3
- Keep both positive and negative branches of the calibration curveso in general positive strength will demand positive current...

	\#	CALIBRATION_NAME	B_FIELD	I
1	SLOPE			
1	MCS	-3646.429694	-600	0
-2	MCS	3646.429694	600	0

Conclusions

- Fairly natural approach

■ Support the MAD world view
\square accelerator physics maps cleanly on to LSA parameters space

- Power converters take positive references
\square use cal sign in one place to take care of this
\square cabling should give correct magnet polarity
- For bi-polar circuits
\square stick with natural strengths, calculate positive or negative currents as required
\square again rely on correct cabling
- Model includes both apertures for transfer functions and harmonics where required.

