LSA magnet polarities

Mike Lamont Marek Strzelczyk

- Reference beam is beam 1 observer looks in direction of beam 1
- Field and gradients positive if current enters A terminal
- Left aperture from connection end is aperture 1 (V1)
- For single aperture magnets covering both beams:
 - \Box beam 1 is used to describe the polarity.

- A positive horizontal kick on beam 1 deflects beam outwards.
 - \Box This implies a negative B field.
- A positive vertical kick on beam 1 deflects beam upwards.
 - □ This implies negative skew dipole field point outwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the B terminal for B1.

- A positive horizontal kick on beam 2 deflects beam outwards. This implies a positive B field.
- A positive vertical kick on beam 2 deflects beam upwards. This implies positive skew dipole - field point inwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the A terminal for B2

For correctors acting on both beams, B1 is the reference but we have to very careful in the software: a positive kick is negative for B2.

Beam	Kick [LSA]	Deflection	Field
B1	+θ H	OUT	V NEG
B1	+θ V	UP	NEG (OUT)*
B2	+θ H	OUT	V POS
B2	+θ V	UP	POS (IN)
B1/B2	+θ H	B1 OUT B2 IN	V NEG
B1/B2	+θ V	B1 UP B2 DOWN	NEG (OUT)*

- A positive quadrupole field gradient or polarity is one where the vertical B-field increases as one moves in a positive x direction (away from the centre of the machine). This is focusing for beam 1
- MAD: a positive value corresponds to horizontal focusing of a positively charged particle.

Beam 1

□ +K horizontally focusing positive A

Beam 2

□ +K horizontally focusing positive B

- kqd := -0.008600955656 ;
- kqf := 0.008990100753 ;
- kqf.a12 := kqf ;
- kqd.a12 := kqd ;
- RQF.A12B1 : MQ, K1 := KQF.A12;
- RQF.A12B2 : MQ, K1 := -KQF.A12;
- MQ.23R5.B1:RQF.A56B1
- MQ.23R5.B2:RQD.A56B2

- Except for bipolar supplies we give power converters positive references
- Rely on cabling to get things right

POWER CONVERTER	BEAM	EXT/INT	APERTURE	F or D	MAGNET POLARITY	TERM	TERMINAL		MAGNET TYPE	PROBLEM
POINT ONE										
RPHGA.RR13.RQ10.L1B1	B1	INT	V2	F	+	В	NEG		MQML	F
RPHGA.RR13.RQ10.L1B2	B2	EXT	V1	D	+	А	POS]	IVIQIVIL	L L
RPHGA.RR13.RQ9.L1B1	B1	INT	V2	D	-	В	POS		MOMENTON	
RPHGA.RR13.RQ9.L1B2	B 2	EXT	V1	F	-	А	NEG	1	MQMC MQM	
RPHGA.RR13.RQ8.L1B1	B1	INT	V2	F	+	В	NEG		NON	-
RPHGA.RR13.RQ8.L1B2	B2	EXT	V1	D	+	А	POS	1	MQML	F
RPHGA.RR13.RQ7.L1B1	B1	INT	V2	D	-	В	POS		10101010	\square
RPHGA.RR13.RQ7.L1B2	B2	EXT	V1	F	-	А	NEG	1	MQM MQM	
RPHGB.RR13.RQ6.L1B1	B1	INT	_V1_	F	+	А	NEG		1.00.0	
RPHGB.RR13.RQ6.L1B2	B2	EXT	V2	D	+	В	POS	*	MQML	
RPHGB.RR13.RQ5.L1B1	B1	INT	V1	D	-	А	POS		MQML	
RPHGB.RR13.RQ5.L1B2	B2	EXT	V2	F	-	В	NEG	*		F
RPHH.RR13.RQ4.L1B1	B1	INT	V2	F	+	В	NEG			
RPHH.RR13.RQ4.L1B2	B2	EXT	V1	D	+	А	POS	1	MQY	F
IP1										
RPHH.RR17.RQ4.R1B1	B1	EXT	V2	D	-	В	NEG			+ - 1
RPHH.RR17.RQ4.R1B2	B2	INT	V1	F	-	A	POS	*	MQY	F
RPHGB.RR17.RQ5.R1B1	B1	EXT	V2	F	+	В	POS			
RPHGB.RR17.RQ5.R1B2	B2	INT	V1	D	+	А	NEG	*	MQML	
RPHGB.RR17.RQ6.R1B1	B1	EXT	V2	D	-	В	NEG		MQML	F
RPHGB.RR17.RQ6.R1B2	B2	INT	V1	F	-	А	POS	*		
RPHGA.RR17.RQ7.R1B1	B1	EXT	V1	F	+	A	POS	-		
RPHGA.RR17.RQ7.R1B2	B2	INT	V2	D	+	В	NEG	1	MQM MQM	F
RPHGA.RR17.RQ8.R1B1	B1	EXT	V1	D	_	А	NEG			
RPHGA.RR17.RQ8.R1B2	B2	INT	V2	F		B	POS	MQML		
RPHGA.RR17.RQ9.R1B1	B1	EXT	V1	F	+	A	POS			$\left \right $
RPHGA.RR17.RQ9.R1B2	B2	INT	V2	D	+	В	NEG	1	MQMC MQM	F
RPHGA.RR17.RQ10.R1B1	B1	EXT	V1	D	-	A	NEG			+
RPHGA.RR17.RQ10.R1B2	B2	INT	V2	F	_	B	POS	1	MQML	

In LSA parlance:

- □ magnet/magnet string is logical hardware
 - i.e stuff we can not directly address
- □ power converters are actual hardware
 - i.e. stuff we can actually talk to, load functions etc.
 - not always a one to one mapping
- We map transfer functions (or calibration curves as we call them (B versus I)) to logical_hardware.
 - i.e. we calculate currents for magnets and worry about the power converters later

Extended this to cover both apertures

- In LSA we keep strengths (K) and current (I) for magnets or magnet strings (logical hardware).
 NB We keep the strength sign: + is F, - is D for both beams
- The magnets/magnet strings are mapped on to power converters for which we calculate currents (IREF).
- To take care of the cases where negative strengths have to give positive reference we have a "calibration sign" on the database which is set to give the correct current when we go through the transfer function.
- For non-bipolar quads we only keep the positive signed TF

RQF.A12/K

RQD.A12/K

#	LOGICAL_HARDWARE_NAME	DESCRIPTION	NB_OF_ELEMENTS	ACTIVE_CAL_NAME	CAL_SIGN
1	RQD.A56		47	MQ	-1
2	RQD.A56B1	single aperture of magnet string	23	MQ	-1
3	RQD.A56B2	single aperture of magnet string	24	MQ	-1
4	RQF.A56		47	MQ	1
5	RQF.A56B1	single aperture of magnet string	24	MQ	1
6	RQF.A56B2	single aperture of magnet string	23	MQ	1
- 7	RQS.A56B2		4	MQS	1
8	RQTD.A56B1		8	MQT	1
9	RQTD.A56B2		8	MQT	1
10	RQTF.A56B1		8	MQT	1
11	RQTF.A56B2		8	MQT	1

RB.A56B1/B3

RB.A56B2/B3

And then hope the cabling is right

Pretty natural

Standard signs for strengths

 \square e.g. positive sextupole compensates negative b3

Keep both positive and negative branches of the calibration curve

□ so in general positive strength will demand positive current...

ľ		#	CALIBRATION_NAME	B_FIELD	I	SLOPE
		1	MCS	-3646.429694	-600	0
	۲	2	MCS	3646.429694	600	0

- Fairly natural approach
- Support the MAD world view
 - □ accelerator physics maps cleanly on to LSA parameters space
- Power converters take positive references
 - □ use cal sign in one place to take care of this
 - □ cabling should give correct magnet polarity
- For bi-polar circuits
 - stick with natural strengths, calculate positive or negative currents as required
 - □ again rely on correct cabling
- Model includes both apertures for transfer functions and harmonics where required.